K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
16 tháng 5 2021

Bạn đọc tự vẽ hình. 

Xét tam giác \(AA'C\)có \(M,B,B'\)lần lượt nằm trên các cạnh \(AA',A'C,CA\)và \(M,B,B'\)thẳng hàng, do đó theo định lí Menelaus ta có: 

\(\frac{MA}{MA'}.\frac{BA'}{BC}.\frac{B'C}{B'A}=1\Leftrightarrow\frac{MA}{MA'}.\frac{BA'}{BC}=\frac{B'A}{B'C}\)

Tương tự khi xét tam giác \(AA'B\)với các điểm \(M,B,B'\)ta cũng có: 

\(\frac{MA}{MA'}.\frac{CA'}{CB}=\frac{C'A}{C'B}\)

Suy ra \(\frac{B'A}{B'C}+\frac{C'A}{C'B}=\frac{MA}{MA'}\left(\frac{BA'}{BC}+\frac{CA'}{CB}\right)=\frac{MA}{MA'}.\frac{BC}{BC}=\frac{MA}{MA'}\).

Ta có đpcm. 

A' M B C C' B' D A E

\(\frac{AM}{A'M}=\frac{AE}{BA'}=\frac{AD}{A'C}=\frac{AD+AE}{A'C+A'B}=\frac{DE}{BC}\)

\(\Delta CBB'\)có AE // BC , nên \(\frac{AB'}{B'C}=\frac{AE}{BC}\)( hệ quả của định lí Ta-lét);

\(\Delta BCC'\)có DA // BC , nên \(\frac{AC'}{BC'}=\frac{DA}{BC}\)( hệ quả của định lí Ta-lét).

Ta có : \(\frac{AB'}{CB'}=\frac{AC'}{BC'}=\frac{AE}{BC}+\frac{DA}{BC}=\frac{DE}{BC}\)

Do đó : \(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)

trong sách nâng cao phát triển toán 8 có bạn nhé

25 tháng 1

Qua  vẽ đường thẳng song song với �� cắt ��′ tại  và cắt ��′ tại .

Khi đó 

Δ��� có �� // �′� suy ra ���′�=���′� (1)

Δ��� có �� // �′� suy ra ���′�=���′� (2)

Từ (1) và (2) ta có ���′�=���′�=���′�=��+���′�+�′�=���� (*)

Chứng minh tương tự ta cũng có:

Δ��′� có �� // �� suy ra ��′�′�=���� (3)

Δ��′� có �� // �� suy ra ��′�′�=���� (4)

Từ (3) và (4) ta có ��′�′�+��′��′=����+����=���� (**)

Từ (*) và (**) ta có ���′�=����=��′�′�+��′��′ (đpcm).

25 tháng 1

Qua  vẽ đường thẳng song song với �� cắt ��′ tại  và cắt ��′ tại .

Khi đó 

Δ��� có �� // �′� suy ra ���′�=���′� (1)

Δ��� có �� // �′� suy ra ���′�=���′� (2)

Từ (1) và (2) ta có ���′�=���′�=���′�=��+���′�+�′�=���� (*)

Chứng minh tương tự ta cũng có:

Δ��′� có �� // �� suy ra ��′�′�=���� (3)

Δ��′� có �� // �� suy ra ��′�′�=���� (4)

Từ (3) và (4) ta có ��′�′�+��′��′=����+����=���� (**)

Từ (*) và (**) ta có ���′�=����=��′�′�+��′��′ (đpcm).

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0
17 tháng 4 2016

win-lê chí cường làm ik

17 tháng 4 2016

Phương- chuẩn bị làm đệ anh đi

24 tháng 9 2021

cần nhanh.Help