tính giá trị của biểu thức
\(1+\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{98.99}+\frac{1}{99.100}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=2-\frac{1}{100}\)
\(=\frac{199}{100}\)
Gọi biểu thức là A
A=1+1/2+1/2.3+1/3.4+...+1/98.99+1/99.100
A-1=1/2+1/2.3+1/3.4+...+1/98.99+1/99.100
A-1=1-1/2+1/2-1/3+1/3-1/4+...+/198-1/99+1/99-1/100
A-1=1-1/100
A-1=99/100
A=99/100+1
A=199/100
\(A=1+\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}+\frac{1}{100}\)
\(\Rightarrow A=1+\frac{1}{2}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{100}\)
\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{2}-\frac{1}{100}+\frac{1}{100}\)
\(\Rightarrow A=1+1\)
\(\Rightarrow A=2\)
Vậy A = 2
Ta có: \(1-\frac{2}{n.\left(n+1\right)}\)
=\(\frac{n.\left(n+1\right)-2}{n\left(n+1\right)}\)
=\(\frac{n^2+n-2}{n.\left(n+1\right)}\)
=\(\frac{\left(n^2-1\right)+\left(n-1\right)}{n.\left(n+1\right)}\)
=\(\frac{\left(n-1\right).\left(n+1\right)+\left(n-1\right)}{n.\left(n+1\right)}\)
=\(\frac{\left(n-1\right).\left(n+1+1\right)}{n.\left(n+1\right)}\)
=\(\frac{\left(n-1\right).\left(n+2\right)}{n.\left(n+1\right)}\)
=>\(1-\frac{2}{n.\left(n+1\right)}=\frac{\left(n-1\right).\left(n+2\right)}{n.\left(n+1\right)}\left(1\right)\)
Lại có: \(M=\left(1-\frac{2}{2.3}\right).\left(1-\frac{2}{3.4}\right).\left(1-\frac{2}{4.5}\right)....\left(1-\frac{2}{99.100}\right)\)
=> \(M=\left(1-\frac{2}{2.\left(2+1\right)}\right).\left(1-\frac{2}{3.\left(3+1\right)}\right).\left(1-\frac{2}{4.\left(4+1\right)}\right)....\left(1-\frac{2}{99.\left(99+1\right)}\right)\left(2\right)\)
Thay (1) vào (2) ta được:
\(M=\frac{\left(2-1\right).\left(2+2\right)}{2.\left(2+1\right)}.\frac{\left(3-1\right).\left(3+2\right)}{3.\left(3+1\right)}.\frac{\left(4-1\right).\left(4+2\right)}{4.\left(4+1\right)}...\frac{\left(99-1\right).\left(99+2\right)}{99.\left(99+1\right)}\)
=> \(M=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}....\frac{98.101}{99.100}\)
=> \(M=\frac{1.4.2.5.3.6....98.101}{2.3.3.4.4.5....99.100}\)
=> \(M=\frac{\left(1.2.3....98\right).\left(4.5.6....101\right)}{\left(2.3.4....99\right).\left(3.4.5....100\right)}\)
=> \(M=\frac{1.101}{99.3}\)
=> \(M=\frac{101}{297}\)
Vậy \(M=\frac{101}{297}\)
Gọi tổng trên là A
A=1/1.2.3+1/2.3.4+1/3.4.5+...1/98.99.100
Ta xét :
1/1.2 ‐ 1/2.3 = 2/1.2.3; 1/2.3 ‐ 1/3.4 = 2/2.3.4;...; 1/98.99 ‐ 1/99.100 = 2/98.99.100
tổng quát: 1/n﴾n+1﴿ ‐ 1/﴾n+1﴿﴾n+2﴿ = 2/n﴾n+1﴿﴾n+2﴿.
Do đó: 2A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/98.99.100
= ﴾1/1.2 ‐ 1/2.3﴿ + ﴾1/2.3 ‐ 1/3.4﴿ +...+ ﴾1/98.99 ‐ 1/99.100﴿
= 1/1.2 ‐ 1/2.3 + 1/2.3 ‐ 1/3.4 + ... + 1/98.99 ‐ 1/99.100
= 1/1.2 ‐ 1/99.100
= 1/2 ‐ 1/9900
= 4950/9900 ‐ 1/9900
= 4949/9900.
Vậy A = 4949 / 9900
Bn làm sai r . kết quả là \(\frac{101}{297}\) nhưng mik ko bt cách giải thôi
a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
b) \(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=2.\left(1-\frac{1}{99}\right)\)
\(=2.\frac{98}{99}\)
\(=\frac{196}{99}=1\frac{97}{99}\)
A = \(\frac{5}{1.2}\) + \(\frac{5}{2.3}\) +........+\(\frac{5}{99.100}\)
A = 5.(\(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) +......+\(\frac{1}{99.100}\) )
A = 5. ( \(\frac{1}{1}\) - \(\frac{1}{2}\) +\(\frac{1}{2}-\frac{1}{3}\) +......+\(\frac{1}{99}-\frac{1}{100}\) )
A= 5. (\(1-\frac{1}{100}\))
A= 5.\(\frac{99}{100}\)
A= \(\frac{99}{20}\)
B = \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+............+ \(\frac{1}{9.10}\)
= \(\frac{1}{2}\)- \(\frac{1}{3}\)+\(\frac{1}{3}\)- \(\frac{1}{4}\)+ ...................+\(\frac{1}{9}\)- \(\frac{1}{10}\)
= \(\frac{1}{2}\) - \(\frac{1}{10}\)
= \(\frac{2}{5}\)
\(=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\right)\)
\(=1-\left(1-\frac{1}{100}\right)=1-\frac{99}{100}=\frac{1}{100}\)
Đặt \(A=1-\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A=1-\frac{1}{100}=\frac{99}{100}\)
Ta có :
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=\)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=\)\(1-\frac{1}{100}\)
\(=\)\(\frac{99}{100}\)
Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}=\frac{99}{100}\)
Chúc bạn học tốt ~
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
ĐÚNG 100%
\(A=\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{99.100}\)
\(A=5\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(A=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=5\left(1-\frac{1}{100}\right)\)
\(A=5.\frac{99}{100}\)
\(A=\frac{99}{20}\)
\(B=\frac{1}{1.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(B=\frac{1}{2}-\frac{1}{10}\)
\(B=\frac{2}{5}\)
\(C=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)
\(C=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)
\(C=\frac{1}{3}-\frac{1}{15}\)
\(C=\frac{4}{15}\)
\(A=\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{99.100}\)
\(A=5\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(A=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=5\left(1-\frac{1}{100}\right)\)
\(A=5.\frac{99}{100}\)
\(A=\frac{99}{20}\)
\(B=\frac{1}{1.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(B=\frac{1}{2}-\frac{1}{10}\)
\(B=\frac{2}{5}\)
\(C=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)
\(C=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)
\(C=\frac{1}{3}-\frac{1}{15}\)
\(C=\frac{4}{15}\)
\(A-1=\frac{1}{1.2}+\frac{1}{2.3}..+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}\)\(=\frac{99}{100}\)
\(A=1+\frac{99}{100}=\frac{199}{100}\)
=1+1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/98-1/99+1/99-1/100
=1+1/2+1/2-1/100
=199/100