K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2017

Em mới lớp 7 nên chỉ biết giải bài 2 thôi

\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{c+b-a}{a}\)

\(\Rightarrow\frac{a+b-c}{c}+2=\frac{a+c-b}{b}+2=\frac{c+b-a}{a}+2\)

\(=\frac{a+b}{c}-1+2=\frac{a+c}{b}-1+2=\frac{c+b}{a}-1+2\)

\(=\frac{a+b}{c}+1=\frac{a+c}{b}+1=\frac{c+b}{a}+1\)

\(=\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)

\(\Rightarrow a=b=c\) Thao vào P ta được :

\(P=\frac{\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a^3}=\frac{2a.2a.2a}{a^3}=\frac{8a^3}{a^3}=8\)

4 tháng 2 2017

1

xét hiệu \(x^5+y^5-x^4y-xy^4=x^4\left(x-y\right)-y^4\left(x-y\right)\)

       \(=\left(x^4-y^4\right)\left(x-y\right)=\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)^2\)

tự lập luộn nha \(\Rightarrow x^5+y^5-x^4y-xy^4\ge0\)

\(\Rightarrow x^5+y^5\ge x^4y+xy^4\)

5 tháng 1 2017

x^5+y^5 >= x^4y+xy^4

<=>x^5+y^5-x^4y-xy^4 >= 0

<=>x^4(x-y)-y^4(x-y) >= 0

<=>(x-y)(x^4-y^4) >= 0

<=>(x-y)(x^2-y^2)(x^2+y^2) >= 0

<=>(x-y)^2(x+y)(x^2+y^2) >= 0 (luôn đúng do x+y >= 0)

Vậy bđt đầu là đúng

12 tháng 6 2017

tìm trc khi hỏi Câu hỏi của Nguyễn Thúy Hường - Toán lớp 8 - Học toán với OnlineMath

 + xét hiệu 
x^5 + y^5 - (x^4.y + x.y^4) 
= x^5 - x^4.y + y^5 - x.y^4 
= x^4.(x - y) + y^4.(y - x) 
= (x^4 - y^4).(x - y) 
= (x + y)(x - y)^2.(x^2 + y^2) >= 0 
-> ĐCPCM

15 tháng 3 2022

giải chi tiết k đc hả trời...........

30 tháng 4 2016

Đề thế này phải ko bạn: 

Chứng minh rằng: \(x^5+y^5\ge x^4.y+x.y^4\)với \(x,y\ne0\)\(x+y\ge0\)

30 tháng 4 2016

bạn vào fx viết lại đề đi nha, sai đề rùi

24 tháng 1 2019

Áp dụng BĐT AM-GM ta có: \(xy\le\frac{\left(x+y\right)^2}{4}\le\frac{x^2+y^2}{2}\)

Suy ra: \(P=6\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]+8\left[\left(x^2+y^2\right)^2-2\left(xy\right)^2\right]+\frac{5}{xy}\)

\(\ge6\left(1-\frac{3}{4}\right)+8\left(\frac{1}{4}-\frac{1}{8}\right)+\frac{5}{\frac{1}{4}}\) (Do x+y=1) \(\Rightarrow P\ge6-\frac{9}{2}+2-1+20=\frac{45}{2}\)(đpcm).

Dấu "=" xảy ra <=> x=y=1/2.

13 tháng 6 2021

Với mọi số thực ta luôn có:

`(x-y)^2>=0`

`<=>x^2-2xy+y^2>=0`

`<=>x^2+y^2>=2xy`

`<=>(x+y)^2>=4xy`

`<=>(x+y)^2>=16`

`<=>x+y>=4(đpcm)`

13 tháng 6 2021

\(\dfrac{1}{x+3}+\dfrac{1}{y+3}=\dfrac{x+3+y+3}{\left(x+3\right)\left(y+3\right)}\)

\(=\dfrac{x+y+6}{3x+3y+13}\)(vì \(xy=4\))

=> \(\dfrac{x+y+6}{3x+3y+13}\)\(\dfrac{2}{5}\)

<=> \(5\left(x+y+6\right)\)\(2\left(3x+3y+13\right)\)

<=>\(6x+6y+26-5x-5y-30\)\(0\)

<=> \(x+y-4\)\(0\)

Áp dụng BĐT AM-GM \(\dfrac{a+b}{2}\)\(\sqrt{ab}\)

Ta có \(\dfrac{x+y}{2}\)\(\sqrt{xy}\)

<=>\(x+y\) ≥ 2\(\sqrt{xy}\)

=>2\(\sqrt{xy}-4\)\(0\)

<=> \(4-4\)≥0

<=>0≥0 ( Luôn đúng )

Vậy \(\dfrac{1}{x+3}+\dfrac{1}{y+3}\)\(\dfrac{2}{5}\)

 

7 tháng 10 2020

\(=\left(x^2-4x+4\right)+\left(y^2-2y+1\right)\)

\(=\left(x-2\right)^2+\left(y-1\right)^2\ge0\forall x;y\)