Câu 1 :
( x+1 ) + ( x+2 ) + ...... + ( x+100 ) = 5750
Câu 2 :
a) Chứng minh rằng nếu : ( ab + cd + eg ) chia hết 11 thì abcdeg chia hết 11
b) Chứng minh rằng : 10 28 + 8 chia hết 72
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1
(x+1)+(x+2)+...+(x+100)=5750
(x+x+...+x)+(1+2+3+...+99+100)=5750 (có 100 số x và từ 1 -100 có 100 số)
(x.100)+(1+100).100:2=5750
(x.100)+5050=5750
x.100=700
x=7
vậy........
câu 2
a)ta có
abcdeg=ab.10000+cd.100+eg
=9999.4b+99cd+ab+cd+eg
=(9999ab+99cd)+(ab+cd+eg)
ta thấy 9999ab+99cd\(⋮\)11 và ab+cd+eg cn vậy...
=>....
vậy...
b)ta có 10^3 chia hết cho 8
=>10^25.10^3 chia hết cho 8 (=10^28)
=>10^28+8 chia hết cho 28 (1)
ta có 10^28+8=10...08(27 cs 0)
=>10^28+8\(⋮\)9(2)
vì ưCLN(8;9)=1 (3)
từ (1)(2)(3) suy ra 10^28+8 chia hết cho 72
vậy.....
a. VD: (12 + 30 + 68) \(⋮\)11 nên 123068 \(⋮\)11
Vậy: (ab + cd + eg) \(⋮\)11 thì abcdeg \(⋮\)11.
b. Đề bài sai
Chúc bạn học tốt!
a,abcdeg=ab.10000+cd.100+eg
=9999.ab+99.cd+ab+cd+eg
=(9999ab+99cd)+(ab+cd+eg)
Vì 9999ab+99cd chia hết cho 11 và ab+cd+eg chia hết cho 11(theo đề bài)
=>đpcm
b đợi tí chưa nghĩ ra
a,abcdeg=ab.10000+cd.100+eg
=9999.ab+99.cd+ab+cd+eg
=(9999ab+99cd)+(ab+cd+eg)
Vì 9999ab+99cd chia hết cho 11 và ab+cd+eg chia hết cho 11(theo đề bài)
=>đpcm
b đợi tí chưa nghĩ ra
ab+cd+eg = 10a+b+d+10e+g
=10(a+c+e)+b+d+g chia hết cho 11 thì
a+c+e chia hết 11
b+d+g chia hết 11
Ta có abcdeg=10000ab+100cd+eg=9999ab+99cd+(ab+cd+eg)
Mà 9999ab chia hết cho 11; 99cd chia hết cho 11;(ab+cd+eg) chia hết cho 11
\(\Rightarrow\)abcdeg chia hết cho 11 (đpcm)
a,abcdeg = ab.10000+ cd. 100 + eg
= 9999.ab + 99.cd + ab + cd+ eg
=[9999ab +99cd + [ ab + cd + eg]
vi 9999ab +99cd chia het cho 11 va ab + cd + eg chia het cho 11[ theo de bai]
=>dpcm
b] tu bn lam
a, ta có: abcdeg = ab x 10000+ cd x 100 + eg= ab x 9999 x ab + cd x 99 x cd + eg = ab x 9999 + cd x 99 + ( ab+cd+eg)
vì 9999 chia hết cho 11 => ab x 9999 chia hết cho 11
vì 99 chia hết cho 11 => cd x 99 chia hết cho 11
mà ab+cd+eg chia hết cho 11 => ab x 9999 x ab+ cd x 99 x cd +eg chia hết cho 11
=> abcdeg chi hết cho 11 ( đpcm )
b,ta có: 1000 chia hết cho 8 => 103 chia hết cho 8
=> 1025 x 103 chi hết cho 8
và 8 chia hết cho 8
=> 1028+8 chia hết cho 8 (1)
Lại có: 1028+8= 10......08 ( 27 chữ số 0 )
=> 1028+8 chia hết cho 9 (2)
Vì ƯCLN(8;9)=1 (3)
Từ (1), (2) và (3)=>1028+8 chia hết cho 72
~~~Chúc bạn học tốt~~~