Tính tổng A=7+7²+7³+7⁴...+7²
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{7}.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{68}-\frac{1}{70}\right)\)
\(A=\frac{1}{7}.\left(\frac{1}{10}-\frac{1}{70}\right)=\frac{1}{7}.\frac{3}{35}=\frac{3}{245}\)
A=\(\frac{7}{10.11}\)+\(\frac{7}{11.12}\)+\(\frac{7}{12.13}\)+...+\(\frac{7}{69.70}\)
A=\(\frac{7}{10}\)-\(\frac{7}{11}\)+\(\frac{7}{11}\)-\(\frac{7}{12}\)+\(\frac{7}{12}\)-\(\frac{7}{13}\)+...+\(\frac{7}{69}\)-\(\frac{7}{70}\)
A=\(\frac{7}{10}-\frac{7}{70}\)
A=\(\frac{7}{10}-\frac{1}{10}\)
Ạ=\(\frac{6}{10}=\frac{3}{5}\).
C=7/10x11+7/11x12+7/12x13+.................+7/69x70
C=1x7/10x11+1x7/11x12+...........+1x7/69x70
C=7(1/10x11+1/11x12+1/12x13+....+1/69x70)
C=7(1/10-1/11+1/11-1/12+1/12-1/13+.......+1/69-1/70)
C=7(1/10-1/70)
C=7(7/70-1/70)
C=7x6/70
C=3/5
\(A=1+7+7^2+7^3+...+7^{2016}\)
\(7A=7\left(1+7+7^2+...+7^{2016}\right)\)
\(7A=7+7^2+7^3+...+7^{2017}\)
\(6A=7A-A=7+7^2+7^3+...+7^{2017}-1-7-7^2-...-7^{2016}\)
\(6A=7^{2017}-7\)
\(A=\left(\frac{7^{2017}-7}{6}\right)\)
\(A=\dfrac{7}{9}\left(9+99+999+...+999...9\right)\)
\(=\dfrac{7}{9}\left(10-1+10^2-1+10^3-1+...+10^{10}-1\right)\)
\(=\dfrac{7}{9}\left(10+10^2+...+10^{10}-10\right)\)
\(=\dfrac{7}{9}\left(10.\dfrac{10^{10}-1}{10-1}-10\right)=\dfrac{7}{9}\left(\dfrac{10^{11}}{9}-\dfrac{10}{9}-10\right)\)
\(=\dfrac{7}{81}.10^{11}-\dfrac{700}{81}\)
bạn lên đây xem nha nó có ở bài toán 2 đấy http://d.violet.vn//uploads/resources/609/3303670/preview.swf
A = 7+73+75+77+....+799
72A = 73+75+77+79+.....+7101
48A = 72A - A = 7101 - 7
=> A = \(\frac{7^{101}-7}{48}\)
Ta có:A=7+72+73+...+72010
=>7A=7(7+72+73+...+72010)
7A=49+73+74+...+72011
=>7A-A=(49+73+74+...+72011)-(7+72+73+...+72010)
=>6A=72011-7
=>A=(72011-7):6
Vậy A=(72011-7):6
\(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(\Rightarrow A=7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+....+\frac{1}{69.70}\right)\)
\(\Rightarrow A=7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(\Rightarrow A=7\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(\Rightarrow A=7.\frac{3}{35}\)
\(\Rightarrow A=\frac{3}{5}\)
A=7+72 +73+...+7n-1+7n
7A = 72 + 73 + 74 + ... + 7n + 7n+1
7A - A = ( 72 + 73 + 74 + ... + 7n + 7n+1 ) - ( 7+72 +73+...+7n-1+7n )
6A = 7n+1 - 7
A = \(\frac{7^{n+1}-7}{6}\)