K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2017

b ) Gọi d là ƯCLN(4n + 1; 6n + 1) Nên ta có :

4n + 1 ⋮ d và 6n + 1 ⋮ d

<=> 3(4n + 1) ⋮ d và 2(6n + 1) ⋮ d

<=> 12n + 3 ⋮ d và 12n + 2 ⋮ d

=> (12n + 3) - (12n + 2) ⋮ d

=> 1 ⋮ d => d = 1

=> \(\frac{4n+1}{6n+1}\) là phân số tối giản (đpcm)

10 tháng 2 2017

a ) Gọi d là ƯCLN(3n - 2; 4n - 3) Nên ta có :

3n - 2 ⋮ d và 4n - 3 ⋮ d

<=> 4(3n - 2) ⋮ d và 3(4n - 3) ⋮ d

<=> 12n - 8 ⋮ d và 12n - 9 ⋮ d

=> (12n - 8) - (12n - 9) ⋮ d

=> 1 ⋮ d => d = 1

=> \(\frac{3n-2}{4n-3}\)là phân số tối giản (đpcm)

a: Gọi d=ƯCLN(2n+7;n+3)

=>2n+7-2n-6 chia hết cho d

=>1 chia hết cho d

=>d=1

=>phân số tối giản

b: Gọi d=ƯCLN(5n+7;2n+3)

=>10n+14-10n-15 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>ĐPCM

c: Gọi d=ƯCLN(2n+1;3n+1)

=>6n+3-6n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

12 tháng 3 2016

MÌNH BIK LÀM CÂU A THUI

=>3n+5 sẽ chia hết cho n-2

nhân n-2 cho 3 thì ta có

3n+5 chia hết cho 3n - 6

=>3n-6+9 chia hết cho 3n - 6

=>3n-6 hay n-2 thuộc ước của 9

****bn tự tìm ước của 9 rồi tìm n nha***

12 tháng 3 2016

mk k rùi đó

5 tháng 8 2018

a) Sử dụng định lí Fermat nhỏ: Với mọi \(n\inℕ\)\(p\ge2\)là số nguyên tố. Ta luôn có \(n^p-n⋮7\)

Dễ thấy 7 là số nguyên tố. Do đó \(n^7-n⋮7\)

Có thể sự dụng pp quy nạp toán học hay biến đổi đẳng thức rồi sử dụng pp xét từng giá trị tại 7k+n với 7>n>0

b)Ta có: \(2n^3+3n^2+n=2n^3+2n^2+n^2+n\)

\(=n^2\left(2n+1\right)+n\left(2n+1\right)\)

\(=n\left(n+1\right)\left(2n+1\right)\)

Ta thấy n(n+1) chia hết 2. Chỉ cần chứng minh thêm đằng thức trên chia hết cho 3

Đặt n=3k+1 và n=3k+2. Tự thế vài và CM

c) Tương tự: \(n^5-5n^3+4n=n^3\left(n^2-1\right)-4n\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n^3-4n\right)\)

\(=\left(n-1\right)\left(n+1\right)n\left(n^2-4\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)

Sắp xếp lại cho trật tự: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Dễ thấy đẳng thức trên chia hết cho 5

Mà ta có: \(n\left(n+1\right)\left(n+2\right)⋮3\)

Và \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮4\)

Và tích của hai số bất kì cũng chia hết cho 2

Vậy đẳng thức trên chia hết cho 3.4.2.5=120

Cậu cuối bn chứng minh cách tương tự. :)

Mik cảm ơn bn nhìu nha!!!!^-^!!!

2 tháng 3 2020

Ta có: \(\frac{n-2}{n-5}=\frac{n-5+3}{n-5}=1+\frac{3}{n-5}\)

Để phân số là số nguyên thì \(\frac{3}{n-5}\)phải nguyên hay \(3⋮\left(n-5\right)\)

=>\(\left(n-5\right)\in\left\{\pm1;\pm3\right\}\)

=> \(n\in\left\{6;-4;2;8\right\}\)

Vậy...

9 tháng 7 2017

a) 2^n=128/4=32=2^5\(\Rightarrow\)n=5

b)3^n+1 :9=81\(\Rightarrow\)3^n.3 :9=81\(\Rightarrow\)3^n:3=81\(\Rightarrow\)3^n =243=3^5\(\Rightarrow\)n=5

c) 15^n:15=(3^2)^2:3^4=3^4:3^4=1\(\Rightarrow\)15^n=15=15^1\(\Rightarrow\)n=1

9 tháng 7 2017

a, <=> 2^n =  128/4 = 32

<=> 2^n = 2^5

<=> n =5

b,<=> 3^(n+1) = 81.9= 729

<=> 3^(n+1) = 3^6

<=> n+1 = 6 <=> n =5

c, <=> 15^(n-1) = 1

<=> 15^(n-1) = 15^ 0 

<=> n-1 = 0 <=> n =1

a: Gọi d=UCLN(4n+8;2n+3)

\(\Leftrightarrow4n+8-4n-6⋮d\)

\(\Leftrightarrow2⋮d\)

mà 2n+3 là số lẻ

nên d=1

=>ĐPCM

b: Gọi a=UCLN(7n+4;9n+5)

\(\Leftrightarrow63n+36-63n-35⋮a\)

=>a=1

=>ĐPCM

8 tháng 4 2022

Me cảm lan bẹn!