Cho tam giác ABC vuông tại A.Tia phân giác góc ABC cắt AC tại D.Trên cạnh BC, lấy điểm E sao cho BE=BA a) Chứng minh tam giác ABD=tam giác EBD b) Chứng minh BD vuông góc với AE tại H c) Qua A; kẻ đường thẳng song song với BD cắt ED tại K.Chứng minh Tam giác ADK cân và từ đó suy ra D là trung điểm của EK d) Chứng minh KE < 2AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABCDIE12
1) Xét hai tam giác ABI và EBI có:
AB = EB (gt)
B1ˆ=B2ˆ(gt)B1^=B2^(gt)
BI: cạnh chung
Vậy: ΔABI=ΔEBI(c−g−c)ΔABI=ΔEBI(c−g−c)
Suy ra: BAIˆ=BEIˆBAI^=BEI^ (hai góc tương ứng)
Mà BAIˆ=90oBAI^=90o
Do đó: BEIˆ=90oBEI^=90o
2) Xét hai tam giác vuông AID và EIC có:
IA = IE (ΔABI=ΔEBIΔABI=ΔEBI)
AIDˆ=EICˆAID^=EIC^ (đối đỉnh)
Vậy: ΔAID=ΔEIC(cgv−gn)ΔAID=ΔEIC(cgv−gn)
Suy ra: ID = IC (hai cạnh tương ứng)
Do đó: ΔIDCΔIDC cân tại I
3) Ta có: AB = EB (gt)
⇒ΔABE⇒ΔABE cân tại B
⇒⇒ BI là đường phân giác đồng thời là đường trung trực AE
hay BI ⊥⊥ AE (1)
Ta lại có: AB = EB (gt)
AD = EC (ΔAID=ΔEICΔAID=ΔEIC)
=> BD = BC
=> ΔBDCΔBDC cân tại B
=> BI là đường phân giác đồng thời là đường cao của tam giác
hay BI ⊥⊥ DC (2)
Từ (1) và (2) suy ra: AE // DC (đpcm)
e) vì AC vuông góc vs BK , KE ( kéo dài ED)vuông góc với BC mà AC và KE cắt nhau tại D => D là trực tâm của tam giác KBC => BD vuoogn góc với KC ( 1 ) .M là trung điểm của KC => BM là đường cao đồng thời là đường trung trực của tam giác KBC ( 2 ) . từ ( 1 ) và ( 2 ) => B, D , M thằng hàng
https://olm.vn/hoi-dap/tim-kiem?id=205295114093&id_subject=1&q=++++++++++Cho+tam+gi%C3%A1c+ABC+vu%C3%B4ng+t%E1%BA%A1i+A.Tia+ph%C3%A2n+gi%C3%A1c+c%E1%BB%A7a+g%C3%B3c+ABC+c%E1%BA%AFt+AC+t%E1%BA%A1i+D.Tr%C3%AAn+c%E1%BA%A1nh+BC+l%E1%BA%A5y+%C4%91i%E1%BB%83m+E+sao+cho+BE=BAa)cmr+tam+gi%C3%A1c+ABD=EBDb)+Qua+%C4%91i%E1%BB%83m+C+k%E1%BA%BB+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+BD+t%E1%BA%A1i+H,+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+BD+c%E1%BA%AFt+tia+BA+t%E1%BA%A1i+F+cmr+BC=BEc)cmr+tam+gi%C3%A1c+ABC=EBFd)cmr+D,E,F+th%E1%BA%B3ng+h%C3%A0ng+%F0%9F%98%82+++++++++ BN THAM KHẢO Ở LINK NÀY
sai de va thieu dieu kien
nen mik ko lam khi nao sua mik lam
hình tự vẽ, c,d tự làm tiếp, bài này đơn giản nha.
a/ Xét ΔABD và ΔEBD vuông tại A và E có:
BD chung; AB = EB; góc A=E=90o
=> ΔABD = ΔEBD (...)
=> góc ABD = góc EBD
=> BD là phân giác của góc ABC
b,xét tam giác BEK vuông tại Evà tam giác BACvuông tại E , có BE=BA, góc KBC chung
=>tam giac BEK= tam giac BAC (ch-gn)
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
BA=BE(gt)
Do đó: ΔABD=ΔEBD(cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{ABD}=\widehat{EBD}\)(hai góc tương ứng)
\(\Leftrightarrow\widehat{ABD}=\widehat{CBD}\)
mà tia BD nằm giữa hai tia BA,BC
nên BD là tia phân giác của \(\widehat{ABC}\)(đpcm)
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(gt)
nên \(\widehat{BED}=90^0\)
Xét ΔADM vuông tại A và ΔEDC vuông tại E có
DA=DE(ΔABD=ΔEBD)
\(\widehat{ADM}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADM=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: AM=EC(Hai cạnh tương ứng)
c) Xét ΔBAE có BA=BE(gt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Suy ra: \(\widehat{BAE}=\widehat{BEA}\)(hai góc ở đáy)
mà \(\widehat{BAE}+\widehat{MAE}=180^0\)(hai góc kề bù)
và \(\widehat{BEA}+\widehat{AEC}=180^0\)(hai góc kề bù)
nên \(\widehat{AEC}=\widehat{EAM}\)