một tam giác đều được chia thành chín ngũ giác. Nếu x là góc (trong) lớn nhất của các ngũ giác này (tính theo độ). Hỏi giá trị nhỏ nhất của x là bao nhiêu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chia tam giác thành đều thành các tam giác đều nhỏ hơn ,hỏi có ít nhất là bao nhiêu tam giác đều nhỏ
Hình vẽ: Gọi gia điểm của AC và BD là F.
CM AEDF là hình bình hành từ đó suy ra SADE=SADF=1.SADE=SADF=1.
Đặt SBFC=x⇒SCDF=1−x.SBFC=x⇒SCDF=1−x.
CM ΔBFCΔBFC đồng dạng với ΔDFA.ΔDFA.
Tìm được SCDF=−1+√52.SCDF=−1+52.
⇒So=3.618033989dm2⇒So=3.618033989dm2.
Giả sử ngũ giác \(ABCDE\) thỏa mãn đk bài toán
Xét \(\Delta BCD\)Và \(ECD\)và \(S_{BCD}=S_{ECD}\)đáy \(CD\)chung, các đường cao hạ từ \(B\)và \(E\)xuống \(CD\) bằng nhau => \(EB\) ∗ \(CD\),Tương tự \(AC\)//\(ED\) ,\(BD\) ∗\(AE\), \(CE\) ∗ \(AB\), \(DA\) ∗ \(BC\)
Gọi \(I\) \(=EC\)∩\(BC\)=> \(ABIE\)là hình bình hành
=> \(S_{IBE}=S_{ABE}=1\)Đặt\(S_{ICD}=x< 1\)
=> SIBC = SBCD - SICD = 1-x = SECD - SICD = SIED
Lại có: \(\orbr{\begin{cases}S_{ICD}=IC=S_{IBC}\\S_{IDE}=IE=S_{IBE}\end{cases}}\)Hay \(\orbr{\begin{cases}x\\1-x\end{cases}}\)\(=\orbr{\begin{cases}1-x\\1\end{cases}}\)
=> x2-3x+ 1 = 0 => x =\(\frac{3+5}{2}\)Do x<1 => x=\(\frac{3-5}{2}\)
Vậy \(S_{IBE}=\frac{5-1}{2}\)
Do đó SABCDE = SEAB + SEBI + SBCD + SIED
\(=3+\frac{5-1}{2}=\frac{5+5}{2}=5\)