Cho \(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x+a}{x+b}\) Tính \(a+b=?\)
Giúp mik với! Ai nhanh được tick!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(0)=-4/10
a/b=-4/10=-2/5
f(1)=-6/26=-3/13=(a+1)/(b+1)
5a=-2b
a/-2=b/5=(a+b)/3
13a+13=-3b-3
15a=-6b
26a=-6b-6
11a=-6
a+b=-3/2.a=3/2.6/11=9/11
a+b=9/11
\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x^2\left(x+1\right)-4\left(x+1\right)}{x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)}\)
\(=\frac{\left(x+1\right)\left(x^2-4\right)}{\left(x+1\right)\left(x^2+7x+10\right)}=\frac{\left(x+2\right)\left(x-2\right)}{x\left(x+2\right)+5\left(x+2\right)}\)
\(=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x+5\right)}=\frac{x-2}{x+5}\Rightarrow a=-2;b=5\)
\(\Rightarrow\)\(a+b=-2+5=3\)
\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}\)
\(=\frac{x^2\left(x+1\right)-4\left(x+1\right)}{x^3+x^2+7x^2+7x+10x+10}\)
\(=\frac{\left(x^2-4\right)\left(x+1\right)}{\left(x+1\right)\left(x^2+7x+10\right)}\)
\(=\frac{x^2-4}{x^2+7x+10}\)
\(=\frac{x^2-4}{x^2+5x+2x+10}\)
\(=\frac{\left(x-2\right)\left(x+2\right)}{x\left(x+5\right)+2\left(x+5\right)}\)
\(=\frac{x-2}{x+5}\)
a) \(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x+3}{97}+\frac{x+4}{96}\)
\(\Rightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1=\frac{x+3}{97}+1+\frac{x+4}{96}+1\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}-\frac{x+100}{97}-\frac{x+100}{96}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)
Vì 1/99 + 1/98 - 1/97 - 1/96 khác 0
=> x + 100 = 0 => x = -100
b) \(\frac{x-3}{47}+\frac{x-2}{48}=\frac{x-1}{49}+1\)
\(\Rightarrow\frac{x-3}{47}-1+\frac{x-2}{48}-1=\frac{x-1}{49}+1-2\)
\(\Rightarrow\frac{x-50}{47}+\frac{x-50}{48}-\frac{x-50}{49}=0\)
\(\Rightarrow\left(x-50\right)\left(\frac{1}{47}+\frac{1}{48}-\frac{1}{49}\right)=0\)
Vì 1/47 + 1/48 - 1/49 khác 0
Nên x -50 = 0 => x = 50
a,\(\frac{10x125x4x25x8}{0,8x0,04x1,25x25+0,6524+0,3476}\)
=\(\frac{10x\left(125x8\right)x\left(4x25\right)}{\left(0,8x1,25\right)x\left(0,04x25\right)+\left(0,6524+0,3476\right)}\)
=\(\frac{10x1000x100}{1x1+1}\)
=\(\frac{1000000}{2}\)=\(500000\)
b,\(\frac{3}{4}\)x X + 1,25 x X + 50% x X = 12,5 x 0,8
0,75 x X + 1,25 x X + 0,5 x X = 10
(0,75 + 1,25 + 0,5) x X = 10
2,5 x X = 10
X = 10: 2,5 =4
a: \(M=2x^2-6xy-3xy-6y-2x^2+6y+8xy\)
\(=-xy\)
\(=\dfrac{2}{3}\cdot\dfrac{3}{4}=\dfrac{1}{2}\)
b: x=16 nên x+1=17
\(N=x^4-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+20\)
\(=x^4-x^3-x^3+x^3+x^2-x^2-x+20\)
=20-x
=20-16=4
Bài 1:
a, \(\frac{1}{-16}-\frac{3}{45}=\frac{-1}{16}-\frac{1}{15}\)
\(=\frac{-15}{240}-\frac{16}{240}\)
\(=\frac{-31}{240}\)
b, \(=\frac{-10}{12}-\frac{-12}{12}\)
\(=\frac{2}{12}=\frac{1}{6}\)
c, \(=\frac{-30}{6}-\frac{1}{6}\)
\(=\frac{-31}{6}\)
Bài 2:
a, \(x=-\frac{1}{2}-\frac{3}{4}\)
\(x=-\frac{1}{4}\)
b, \(\frac{1}{2}+x=-\frac{11}{2}\)
\(x=-\frac{11}{2}-\frac{1}{2}\)
\(x=-6\)
Bạn nhớ k đúng và chọn câu trả lời này nhé!!!! Mình giải đúng và chính xác hết ^_^
a.2x#+_2 . quy đồng khử mẫu tchung : (x+2)(x+1)+(x-1)(x-2)--->2x^2 + 4=2(x^2+2). --> s={x thuộc R/ X#+_2}
a) ĐKXĐ \(\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)+\left(x-1\right)\left(x-2\right)-2x\left(x^2+2\right)=0\)
\(\Leftrightarrow x^2+3x+2+x^2-3x+2-2x^2-4=0\)
\(\Leftrightarrow0x=0\)(vô số nghiệm)
nghiệm x thỏa mãn phương trình S \(\in\)R với \(\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
b) ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
\(\Rightarrow\frac{5-x}{4x\left(x-2\right)}-\frac{1}{8\left(x-2\right)}=\frac{1}{2x\left(x-2\right)}-\frac{7}{8x}\)
\(\Rightarrow2\left(5-x\right)-x-4\left(x-1\right)+7\left(x-2\right)=0\)
\(\Leftrightarrow10-2x-x-4x+4+7x-14=0\)
\(\Leftrightarrow0x=0\)(phương trìh vô số nghiệm)
nghiệm x thỏa mãn phương trình S \(\in\)R với \(\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
Phân tích phương trình:
\(\frac{x^3+x^2-4\cdot x-4}{x^3+8\cdot x^2+17\cdot x+10}=\frac{x^2\cdot\left(x+1\right)-4\cdot\left(x+1\right)}{x^2\cdot\left(x+1\right)+7\cdot x\cdot\left(x+1\right)+10\cdot\left(x+1\right)}\)
\(=\frac{\left(x+1\right)\cdot\left(x^2-4\right)}{\left(x+1\right)\cdot\left(x^2+7\cdot x+10\right)}\)
\(=\frac{\left(x+1\right)\cdot\left(x+2\right)\cdot\left(x-2\right)}{\left(x+1\right)\cdot\left(x+2\right)\cdot\left(x+5\right)}=\frac{x-2}{x+5}\)
Vậy \(a=-2;b=5\)