Cho biểu thức P(n) = an+b.n+c, trong đó a,b,c là những số nguyên. Biết rằng với mọi giá trị nguyên dương n, giá trị của biểu thức P(n) luôn chia hết cho một số nguyên dương m cho trước. CMR b2 phải chia hết cho m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gán x = 1;2;3 lần lượt ta có:
\(F\left(1\right)=a+b+c\)chia hết cho m. (1)
\(F\left(2\right)=a^2+2b+c\)chia hết cho m. (2)
\(F\left(3\right)=a^3+3b+c\)chia hết cho m. (3)
Từ (1) và (2) => \(\left(a^2+2b+c\right)-\left(a+b+c\right)=a\left(a-1\right)+b\)chia hết cho m. (4)
Từ (2) và (3) => \(\left(a^3+3b+c\right)-\left(a^2+2b+c\right)=a^2\left(a-1\right)+b\)chia hết cho m. (5)
Từ (4) và (5) => \(\left[a^2\left(a-1\right)+b\right]-\left[a\left(a-1\right)+b\right]=a\left(a-1\right)^2\)chia hết cho m.
Thay vào (4) => b chia hết cho m
=> b2 chia hết cho m. ĐPCM
sao phần đầu toán toán lớp 8,9 thế ?? e lớp 5 chẳng trloi của ai trên đầu cả !! nhưng e chúc các a chị nhận đc nhìu câu trloi hay nhé !! ai ngang qua thả cho e nha ! e cám ơn rất nhìu ạ !
a) Lấy 2m+1-2(m-1)\(⋮\)2m+1.
Tìm các giá trị của 2m+1 rồi tìm m
b) Theo đề bài => /m/<2 để /3m-1/<3
a)m-1 chia hết 2m+1
suy ra 2(m-1) chia hết cho 2m+1
\(\Rightarrow\)2m-2\(⋮\)2m+1
\(\Rightarrow\)2(m-1+1)-2\(⋮\)2m+1
\(m-1⋮2m+1\)
\(\Rightarrow2m-2⋮2m+1\)
\(\Rightarrow2m+1-3⋮2m+1\)
\(\Rightarrow3⋮2m+1\)
tu lam
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot5\cdot2\)
\(=3^n\cdot10-2^{n-1}\cdot10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Ba số trên là ba số tự nhiên liên tiếp nên chia hết cho 6 ( Ví dụ : 1.2.3= 6 chia hết cho 6 )
\(\Rightarrow n^3-n⋮6\)
n^3 - n
= n( n^2 - 1 )
Xét 2 trường hợp :
1 . n là số chẵn
ð n( n^2 – 1 ) chia hết cho 2
2 . n là số lẽ
=> n^2 – 1 là số chẵn
=> n( n^2 – 1 ) chia hết cho 2
Vậy n^3 – n chia hết cho 2
Có n^3 – n = n( n^2 – 1 ) = n( n + 1 )( n – 1 )
Vì n , n + 1 và n – 1 là 3 số tự nhiên liên tiếp nên chia hết cho 3
=> n^3 – n chia hết cho 3
Vì n^3 – n cùng chia hết cho cả 3 và 2
=> n^3 – n chia hết cho 6