Tim a,b thuoc N sao cho: (2016a +13b -1)*(2016^a +2016a +b)= 2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 2015 là số lẻ => (2016a+13b-1).(2016a+2016a+b)lẻ
=> \(\hept{\begin{cases}2016a+13b-1\\2016^a+2016a+b\end{cases}}\)lẻ
Nếu a \(\ne0\)=>2016a chẵn =>13b-1 lẻ =>13b chẵn
mà 13 lẻ =>b chẵn
lúc đó 2016a+2016a +b chẵn(loại vì 2016a+2016+b phải lẻ)
=> a\(\ne0\)ko thỏa mãn
Nếu a=0 => 2016a +13b-1=13b-1 lẻ
2016a+2016a +b =b+1 lẻ
=>(13b-1)(b+1)=2015
mà b\(\in N\)=> (13b-1),(b+1)\(\inƯ\left(2015\right)\)
Do 13b-1 ko chia hết cho 3 , 13b-1>b+1
=>\(\hept{\begin{cases}13b-1=155\\b+1=13\end{cases}}\Rightarrow\hept{\begin{cases}b=12\\b=12\end{cases}}\Rightarrow b=12\)(thỏa mãn)
Vậy a=0,b=12
ta có 2015 là số lẻ => (2016a+13b-1).(2016a+2016a+b)lẻ
=> \(\hept{\begin{cases}2016a+13b-1\\2016^a+2016a+b\end{cases}}\)lẻ
Nếu a \(\ne0\)=>2016a chẵn =>13b-1 lẻ =>13b chẵn
mà 13 lẻ =>b chẵn
lúc đó 2016a+2016a +b chẵn(loại vì 2016a+2016+b phải lẻ)
=> a\(\ne0\)ko thỏa mãn
Nếu a=0 => 2016a +13b-1=13b-1 lẻ
2016a+2016a +b =b+1 lẻ
=>(13b-1)(b+1)=2015
mà b\(\in N\)=> (13b-1),(b+1)\(\inƯ\left(2015\right)\)
Do 13b-1 ko chia hết cho 3 , 13b-1>b+1
=>\(\hept{\begin{cases}13b-1=155\\b+1=13\end{cases}}\Rightarrow\hept{\begin{cases}b=12\\b=12\end{cases}}\Rightarrow b=12\)(thỏa mãn)
Vậy a=0,b=12
ta có 2015 là số lẻ => (2016a+13b-1).(2016a+2016a+b)lẻ
=> \(\hept{\begin{cases}2016a+13b-1\\2016^a+2016a+b\end{cases}}\)lẻ
Nếu a \(\ne0\)=>2016a chẵn =>13b-1 lẻ =>13b chẵn
mà 13 lẻ =>b chẵn
lúc đó 2016a+2016a +b chẵn(loại vì 2016a+2016+b phải lẻ)
=> a\(\ne0\)ko thỏa mãn
Nếu a=0 => 2016a +13b-1=13b-1 lẻ
2016a+2016a +b =b+1 lẻ
=>(13b-1)(b+1)=2015
mà b\(\in N\)=> (13b-1),(b+1)\(\inƯ\left(2015\right)\)
Do 13b-1 ko chia hết cho 3 , 13b-1>b+1
=>\(\hept{\begin{cases}13b-1=155\\b+1=13\end{cases}}\Rightarrow\hept{\begin{cases}b=12\\b=12\end{cases}}\Rightarrow b=12\)(thỏa mãn)
Vậy a=0,b=12
ta có 2015 là số lẻ => (2016a+13b-1).(2016a+2016a+b)lẻ
=> \(\hept{\begin{cases}2016a+13b-1\\2016^a+2016a+b\end{cases}}\)lẻ
Nếu a \(\ne0\)=>2016a chẵn =>13b-1 lẻ =>13b chẵn
mà 13 lẻ =>b chẵn
lúc đó 2016a+2016a +b chẵn(loại vì 2016a+2016+b phải lẻ)
=> a\(\ne0\)ko thỏa mãn
Nếu a=0 => 2016a +13b-1=13b-1 lẻ
2016a+2016a +b =b+1 lẻ
=>(13b-1)(b+1)=2015
mà b\(\in N\)=> (13b-1),(b+1)\(\inƯ\left(2015\right)\)
Do 13b-1 ko chia hết cho 3 , 13b-1>b+1
=>\(\hept{\begin{cases}13b-1=155\\b+1=13\end{cases}}\Rightarrow\hept{\begin{cases}b=12\\b=12\end{cases}}\Rightarrow b=12\)(thỏa mãn)
Vậy a=0,b=12
+ Nếu a = 2
VT = (2016.2 + 13b - 1)(20162 - 2016.2 + b) > 2015, mâu thuẫn với đề bài ( loại)
=> a < 2
+ Nếu a = 1, ta có:
(2016.1 + 13b - 1)(20161 - 2016.1 + b) = 2015
=> (13b + 2015).b = 2015 (1)
Dễ thấy 13b + 2015 > 0 do b thuộc N
Nên b = 0
Thay vào (1) -> vô lý
Do đó, a = 0
Thay vào đề bài ta được:
(2016.0 + 13b - 1)(20160 - 2016.0 + b) = 2015
=> (13b - 1).(b + 1) = 2015 = 5.13.31
Mà 13b - 1 chia 13 dư 12 => 13b - 1 = 5.31 = 155; b + 1 = 13
=> 13b = 156; b = 12
=> b = 12
Vậy a = 0; b = 12
Ta xét các TH sau a=b=0,
a=1,b=0
a=0,b=1
thay vào thấy không thỏa mãn
vậy xét a>1 và b>1:
Nhận thấy: \(\left(2016a+13b-1\right)\left(2016^a+2016a+b\right)>\left(2016+13-1\right)\left(2016^1+2016+1\right)>2015\)
Vậy khong tồn tại a,b thỏa mãn