K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2017

\(x^2+y^2=6x-5\)

\(\left(x-3\right)^2+y^2=2^2\Rightarrow1\le x\le5\)

\(1\le x^2+y^2\le25\)

18 tháng 4 2022

Có xy ≤ 1/4 (x+y)^2

=> 3xy ≤ 3/4 (x+y)^2

=> T = x^2-xy+y^2 = (x+y)^2 - 3xy ≥ (x+y)^2 - 3/4 (x+y)^2 = 1/4 (x+y)^2

=10201/4

Dấu = xảy ra khi x=y=101/2

T = (x+y)^2 - 3xy <= (x+y)^2 = 101^2 = 10201

Dấu = xảy ra khi 1 số = 0, 1 số = 101

NV
15 tháng 9 2021

\(a^2+b^2+6ab+2=2a+3b\Rightarrow\left(a+b\right)^2-3\left(a+b\right)+2=-a\left(4b+1\right)\le0\)

\(\Rightarrow\left(a+b-1\right)\left(a+b-2\right)\le0\Rightarrow1\le a+b\le2\)

\(a^2+b^2+6ab+2=2a+3b\Rightarrow4ab=-\left(a+b\right)^2+2a+3b-2\)

\(-P=\dfrac{6a+5b+4ab+7}{a+b+1}=\dfrac{6a+5a+7-\left(a+b\right)^2+2a+3b-2}{a+b+1}\)

\(=\dfrac{-\left(a+b\right)^2+8\left(a+b\right)+5}{a+b+1}\)

Tới đây có thể giải theo lớp 9 (tách thành tích hoặc bình phương) hoặc làm theo lớp 12 (khảo sát hàm \(f\left(x\right)=\dfrac{-x^2+8x+5}{x+1}\) trên \(\left[1;2\right]\)). Cả 2 việc đều dễ dàng cả

\(-P=6-\dfrac{\left(x-1\right)^2}{x+1}=\dfrac{17}{3}+\dfrac{\left(3x-1\right)\left(2-x\right)}{3\left(x+1\right)}\)

15 tháng 9 2021

Cảm ơn anh :33

NV
27 tháng 8 2021

\(P=\sqrt{\left(x-3\right)^2+4^2}+\sqrt{\left(y-3\right)^2+4^2}+\sqrt{\left(z-3\right)^2+4^2}\)

\(P\ge\sqrt{\left(x-3+y-3+z-3\right)^2+\left(4+4+4\right)^2}=6\sqrt{5}\)

\(P_{min}=6\sqrt{5}\) khi \(x=y=z=1\)

Mặt khác với mọi \(x\in\left[0;3\right]\) ta có:

\(\sqrt{x^2-6x+25}\le\dfrac{15-x}{3}\)

Thật vậy, BĐT tương đương: \(9\left(x^2-6x+25\right)\le\left(15-x\right)^2\)

\(\Leftrightarrow8x\left(3-x\right)\ge0\) luôn đúng

Tương tự: ...

\(\Rightarrow P\le\dfrac{45-\left(x+y+z\right)}{3}=14\)

\(P_{max}=14\) khi \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị

2 tháng 12 2017

Giải:

Đặt \(A=x+y+2017\) Ta có: \(x^2+2xy+6x+6y+2y^2+8=0\)

\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+y^2=-8\)

Mà \(y^2\ge0\Rightarrow\left(x+y\right)^2+6\left(x+y\right)\le-8\)

\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9\le1\) \(\Leftrightarrow\left(x+y+3\right)^2\le1\)

\(\Rightarrow\left|x+y+3\right|\le1\Rightarrow-1\le x+y+3\le1\)

\(\Leftrightarrow2013\le A\le2015\) Dấu "=" xảy ra:

\(A_{MIN}\Leftrightarrow\hept{\begin{cases}x+y+2017=2013\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-4\\y=0\end{cases}}\)

\(A_{MAX}\Leftrightarrow\hept{\begin{cases}x+y+2017=2015\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=0\end{cases}}\)

21 tháng 12 2017

\(x^2+2xy+6x+6y+2y^2+8=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(6x+6y\right)+9+y^2-1=0\)

\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9=1-y^2\)

\(\left(x+y+3\right)^2=1-y^2\)

Do \(VP=1-y^2\le1\forall x\) \(\Rightarrow VT=\left(x+y+3\right)^2\le1\)

\(\Leftrightarrow-1\le x+y+3\le1\)

\(\Leftrightarrow-1+2013\le x+y+3+2013\le1+2013\)

\(\Leftrightarrow2012\le x+y+2016\le2014\) hay \(2012\le B\le2014\)

B đạt MIN là 2012 \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=-1\end{cases}\Rightarrow\hept{\begin{cases}y=0\\x=-4\end{cases}}}\)

B đạt MAX là 2014 \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=1\end{cases}\Leftrightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}}\)

26 tháng 12 2018

đề bài sai r bn ơi phải là +10 chứ ko phải +8 đâu nhá