Cho A = n+8/2n-5 (n nguyên dương ). Tìm n để A là 1 số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n thuộc N* => (2n - 5) thuộc Z và lớn hơn hoặc bằng -3
Để a là số nguyên thì 8 chia hết cho (2n - 5)
=> n thuộc Ư(8)
=> Ư( 8 ) = { -1; 1; -2; 2; -4;4;-8; 8 }
=> n thuộc { 2 ; 3 }
Chúc bạn học giỏi nhé !!!
uế ảnh đại diện là cậu hả xấu thể dời đi đúng cho thiên hạ nhìn thấy người ta cười cho daty đã xấu rồi cứ cố gắng đăng lên làm gì đòi đi
linh oi vay nhin lai bn xem xinh bang bn y chua ma che ma co xinh hon thi da sao mink thay bn y cung xinh ma
Lời giải:
Trước khi $a$ là số nguyên tố thì $a$ cần là số nguyên.
Để $a$ nguyên thì với $n\in\mathbb{N}$, ta có:
$n+8\vdots 2n-5$
$\Rightarrow 2(n+8)\vdots 2n-5$
$\Rightarrow (2n-5)+21\vdots 2n-5$
$\Rightarrow 21\vdots 2n-5$
$\Rightarrow 2n-5\in\left\{\pm 1; \pm 3; \pm 7; \pm 21\right\}$
$\Rightarrow n\in \left\{3; 2; 4; 1; 6; -1; 13; -8\right\}$
Do $n$ tự nhiên nên $n\in \left\{3; 2; 4; 1; 6; 13\right\}$
Thử lần lượt các giá trị $n$ vào $a$ ta được:
$n\in\left\{3; 6\right\}$ thỏa mãn
\(\text{Ta gọi ước chung lớn nhất của 2n + 8 và n + 1 là d . (d thuộc N*)}\)
\(\hept{\begin{cases}2n+8\text{chia hết cho d}\\n+1\text{chia hết cho d}\end{cases}< =>\hept{\begin{cases}2n+8\text{chia hết cho d}\\2\left(n+1\right)\text{chia hết cho d}\end{cases}< =>}\hept{\begin{cases}2n+8\text{chia hết cho d}\\2n+2\text{chia hết cho d}\end{cases}}}\)
\(=>\left(2n+8\right)-\left(2n+2\right)\text{chia hết cho d}\)
\(=>6\text{chia hết cho d}\)
\(=>\text{ d thuộc ước của 6}\)
\(\text{Để A là số nguyên tố thì d khác 6 }\)
\(=>n\text{khác}6k+1\)\(\text{(k khác N*)}\)
để n là số nguyên tố suy ra n+8 chia hết cho 2n-5
suy ra:n+8 chia hết cho 2n-5 suy ra:2n+16 chia hết cho 2n-5
và 2n-5 chia hết cho 2n-5 và 2n-5 chia hết cho 2n-5
suy ra [2n+16-2n+5]chia hết cho 2n-5
21 chia hết cho 2n-5
sau đó bạn tìm n rồi thay vào n+8/2n-5 rồi chọn kết quả nguyên tố tương ứng với n
nhớ bấm đúng cho mình nha
Ta co :