cho 5 số nguyên dương a;b;c;d;e .chứng minh rằng (a-b)(a-c)(a-d)(a-e)(b-c)(b-d)(b-e)(c-d)(c-e)(d-e) chia hết cho 288
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CM
24 tháng 12 2017
a) a là một số nguyên dương. Tích a . b là một số nguyên dương
Suy ra b là một số nguyên dương
b) a là một số nguyên dương. Tích a . b là một số nguyên âm
Suy ra b là một số nguyên âm
VC
2
18 tháng 2 2017
để n là số nguyên tố suy ra n+8 chia hết cho 2n-5
suy ra:n+8 chia hết cho 2n-5 suy ra:2n+16 chia hết cho 2n-5
và 2n-5 chia hết cho 2n-5 và 2n-5 chia hết cho 2n-5
suy ra [2n+16-2n+5]chia hết cho 2n-5
21 chia hết cho 2n-5
sau đó bạn tìm n rồi thay vào n+8/2n-5 rồi chọn kết quả nguyên tố tương ứng với n
nhớ bấm đúng cho mình nha
13 tháng 12 2020
+) Vì y và x tỉ lệ thuận với nhau nên:
hay
Vậy y tỉ lệ thuận với x theo hệ số tỉ lệ 2.
Đặt P=(a-b)(a-c)(a-d)(a-e)(b-c)(b-d)(b-e)(c-d)(c-e)(d-e)
*Với 5 số a,b,c,d,e có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử hai số đó là a và b khi đó a-b chia hết cho 3. Bỏ đi b, xét 4 số còn lại. Trong 4 số này có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử 2 số đó là d và e khi đó d-e chia hết cho 3. =>P chia hết cho 9(1).
*Trong 5 số tự nhiên có ít nhất 3 số cùng tính chẵn lẻ.
-Nếu có cả 5 số cùng tính chẵn lẻ hiển nhiên tất cả các thừa số của P đều chia hết cho 2.
=>P chia hết cho
=>P chia hết cho
=>P chia hết cho 32
-Nếu trong 5 số có 4 số cùng tính chẵn lẻ, 4 số này tạo ra 6 thừa số của tích, mà mỗi tích đều chia hết cho 2.
=>P chia hết cho
=>P chia hết cho
=>P chia hết cho 32
-Nếu trong 5 số có 3 số cùng tính chẵn, không mất tính tổng quát giả sử đó là a,b,c.
Đặt a=2.m,b=2.n,c=2.p,d=2.q+1,e=2.l+1
=>P là tích của 16(m-n)(m-p)(n-p)(q-l) và 6 thừa số lẻ. Trong 3 số m,n,p có ít nhất 2 số cùng tính chẵn lẻ, chúng tạo ra 1 thừa số chia hết cho 2.
=>P chia hết cho 32
Tương tự với 3 số cùng lẻ và 2 số cùng chẵn thì P chia hết cho 32.
=> P chia hết cho 32(2).
Từ (1) và (2) ta thấy: P chia hết cho 9 và 32.
Mà (9,32)=1
=>P chia hết cho 9.32.
=>P chia hết cho 288
=> ĐPCM
Đặt P=(a-b)(a-c)(a-d)(a-e)(b-c)(b-d)(b-e)(c-d)(c-e)(d-e)
*Với 5 số a,b,c,d,e có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử hai số đó là a và b khi đó a-b chia hết cho 3. Bỏ đi b, xét 4 số còn lại. Trong 4 số này có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử 2 số đó là d và e khi đó d-e chia hết cho 3. =>P chia hết cho 9(1).
*Trong 5 số tự nhiên có ít nhất 3 số cùng tính chẵn lẻ.
-Nếu có cả 5 số cùng tính chẵn lẻ hiển nhiên tất cả các thừa số của P đều chia hết cho 2.
=>P chia hết cho
=>P chia hết cho
=>P chia hết cho 32
-Nếu trong 5 số có 4 số cùng tính chẵn lẻ, 4 số này tạo ra 6 thừa số của tích, mà mỗi tích đều chia hết cho 2.
=>P chia hết cho
=>P chia hết cho
=>P chia hết cho 32
-Nếu trong 5 số có 3 số cùng tính chẵn, không mất tính tổng quát giả sử đó là a,b,c.
Đặt a=2.m,b=2.n,c=2.p,d=2.q+1,e=2.l+1
=>P là tích của 16(m-n)(m-p)(n-p)(q-l) và 6 thừa số lẻ. Trong 3 số m,n,p có ít nhất 2 số cùng tính chẵn lẻ, chúng tạo ra 1 thừa số chia hết cho 2.
=>P chia hết cho 32
Tương tự với 3 số cùng lẻ và 2 số cùng chẵn thì P chia hết cho 32.
=> P chia hết cho 32(2).
Từ (1) và (2) ta thấy: P chia hết cho 9 và 32.
Mà (9,32)=1
=>P chia hết cho 9.32.
=>P chia hết cho 288
=> ĐPCM