Giải hệ :
\(\left\{{}\begin{matrix}x^2\left(4y+1\right)-2y=-3\\x^2\left(x^2-12y\right)+4y^2=9\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\left\{{}\begin{matrix}x^3-y^3=16x-4y\\-4=5x^2-y^2\end{matrix}\right.\)
Nhân vế:
\(-4\left(x^3-y^3\right)=\left(16x-4y\right)\left(5x^2-y^2\right)\)
\(\Leftrightarrow21x^3-5x^2y-4xy^2=0\)
\(\Leftrightarrow x\left(7x-4y\right)\left(3x+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4y}{7}\\y=-3x\end{matrix}\right.\)
Thế vào \(y^2=5x^2+4...\)
b. Đề bài không hợp lý ở \(4x^2\)
c.
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=9\\3x^2+6y^2=3x-12y\end{matrix}\right.\)
Trừ vế:
\(x^3-y^3-3x^2-6y^2=9-3x+12y\)
\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)
\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)
\(\Leftrightarrow x-1=y+2\)
\(\Leftrightarrow y=x-3\)
Thế vào \(x^2=2y^2=x-4y\) ...
a.\(\left\{{}\begin{matrix}4x+2y=14\\2x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x=18\\2x-2y=4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\4-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\-2y=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
vậy hệ pt có ndn \(\left\{2;0\right\}\)
b.\(\left\{{}\begin{matrix}2x-4y=0\\3x+2y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=0\\6x+4y=16\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}8x=16\\2x-4y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\4-4y=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\-4y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
vậy hệ pt có ndn \(\left\{2;1\right\}\)
Gõ đề có sai không ạ?
\(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^4\left(1-2x^2\right)=y^4\\1+\sqrt{1+\left(x-y\right)^2}=x^3\left(x^3-x+2y^2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2x^6-x^4+y^4\\-\sqrt{1+\left(x-y\right)^2}=1-x^6+x^4-2x^3y^2\end{matrix}\right.\)
Cộng theo vế HPT2
\(\sqrt{4-\left(1-x^2y\right)^2}-\sqrt{1+\left(x-y\right)^2}=\left(x^3-y^2\right)^2+1\)
\(\Leftrightarrow\sqrt{4-\left(1-x^2y\right)^2}=\sqrt{1+\left(x-y\right)^2}+\left(x^3-y^2\right)^2+1\) (1)
Có:
\(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}\le2\\\sqrt{1+\left(x-y\right)^2}+\left(x^2-y^2\right)^2+1\ge2\end{matrix}\right.\)
\(\Rightarrow\) (1) xảy ra \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2\\\sqrt{1+\left(x-y\right)^2}=1\\\left(x^3-y^2\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=1\)
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{3x-1}=a\ge0\\\sqrt{8y+3}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a+2\left(a^2+1\right)=b+2\left(b^2-3\right)+8\)
\(\Leftrightarrow2a^2-2b^2+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(2a+2b+1\right)=0\)
\(\Leftrightarrow a=b\Leftrightarrow3x-1=8y+3\) (1)
Lại xét pt đầu:
\(\left(x+4y\right)\left(x^2+16y^2+8xy\right)=8xy\left(x+4y\right)+32xy\left(x+4y-3\sqrt{xy}\right)\)
\(\Leftrightarrow\left(x+4y\right)^3-40xy\left(x+4y\right)+96xy\sqrt{xy}=0\)
Đặt \(\left\{{}\begin{matrix}x+4y=m\\\sqrt{xy}=n\ge0\end{matrix}\right.\)
\(\Rightarrow m^3-40mn^2+96n^3=0\)
\(\Leftrightarrow\left(m-4n\right)\left(m^2+4mn-24n^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4y=4\sqrt{xy}\\\left(x+4y\right)^2+4\left(x+4y\right)\sqrt{xy}-24xy=0\end{matrix}\right.\) (2)
Rút x hoặc y từ (1) và thế vào (2) để giải
Dài quá làm biếng.
hpt \(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(4y+1\right)=2y-3\\x^2\left(x^2-12y\right)=-4y^2+9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2\left(4y+1\right)\left(2y+3\right)=4y^2-9\\x^2\left(x^2-12y\right)=-4y^2+9\end{matrix}\right.\)
Cộng theo vế 2 pt ta đc:
\(x^2\left(x^2+8y^2+2y+3\right)=0\)
\(\Leftrightarrow x^2\left[x^2+7y^2+\left(y+1\right)^2+2\right]=0\)
\(\Leftrightarrow x=0\)
\(\Rightarrow y=\dfrac{3}{2}\left(tm\right)\)