K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2017

câu 1 là :từ a/x + b/y + c/z =0 suy ra (ayz+bxz+cxy)/xyz =0 suy ra ayz+bxz+cxy=0 (1)

vì x/a + y/b + z/c =1 (gt) suy ra (x/a + y/b + z/c )^2 = 1^2 . suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2(xy/ab + yz/bc + xz/ac) =1

suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2[(ayz+bxz+cxy)/abc = 1 (2)

Từ (1) và (2) suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 =1 (đpcm)

24 tháng 2 2017

câu 3 98

8 tháng 12 2016

Từ \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)

\(\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1^2\)

   \(\left(\frac{x}{a}+\frac{y}{b}\right)^2+2\left(\frac{x}{a}+\frac{y}{b}\right)\frac{z}{c}+\left(\frac{z}{c}\right)^2=1\)

\(\left(\frac{x}{a}\right)^2+2\frac{x}{a}\frac{y}{b}+\left(\frac{y}{b}\right)^2+\left(2\frac{x}{a}+2\frac{y}{b}\right)\frac{z}{c}+\left(\frac{z}{c}\right)^2=1\)

\(\frac{x^2}{a^2}+\frac{2xy}{ab}+\frac{y^2}{b^2}+\frac{2xz}{ac}+\frac{2yz}{bc}+\frac{z^2}{c^2}=1\)

\(\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)+\left(\frac{2xy}{ab}+\frac{2xz}{ac}+\frac{2yz}{bc}\right)=1\)

\(\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)+\frac{2xyz}{abc}\left(\frac{c}{z}+\frac{b}{y}+\frac{a}{x}\right)=1\)

\(\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)+\frac{2xyz}{abc}.0=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(ĐPCM\right)\)

24 tháng 12 2018

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow ayz+bxz+cxy=0\)

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)\)

\(=1-2.\frac{cxy+bxz+ayz}{abc}=1-2.0=1\)

16 tháng 8 2017

Ờm thì đại khái như vầy , dùng thêm hằng cao cấp mới chơi được =))

Link : Bảy hằng đẳng thức đáng nhớ – Wikipedia tiếng Việt 

Dùng hằng mở rộng số 4

Ta có :

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\) (1)

Lại có :

\(\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)^2=\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1^2=1\) (chỗ này dùng cái skill mở rộng) 

<=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\left(\frac{xyc}{abc}+\frac{ayz}{abc}+\frac{bzx}{abc}\right)=1\)

<=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\frac{ayz+bxz+cxy}{abc}=1\)

Thay 1 vào 

=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=1\)

16 tháng 8 2017

mình giải hơi khác 1 chút, nhưng thôi cx đc

27 tháng 9 2017

thiếu đề kìa

27 tháng 9 2017

//olm.vn/hoi-dap/question/775639.html

vào đây xem nhé

18 tháng 7 2016

18. Ta có : \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)

\(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2xyz\left(\frac{1}{abz}+\frac{1}{xbc}+\frac{1}{acy}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2xyz\left(\frac{ayz+bxz+cxy}{abcxyz}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)

18 tháng 7 2016

19. Nhân cả hai vế của đẳng thức giả thiết với \(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\)được 

\(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right)=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}=0\)

Ta có ;

 \(\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}=\frac{\left(a+b\right)\left(a-b\right)+\left(b+c\right)\left(b-c\right)+\left(c+a\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(=\frac{a^2-b^2+b^2-c^2+c^2-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)

7 tháng 2 2021

Ta có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\cdot\frac{xyc+yza+zxb}{abc}=1\)

Mà \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Leftrightarrow\frac{yza+zxb+xyc}{xyz}=0\)

\(\Rightarrow yza+zxb+xyc=0\)

\(\Rightarrow A=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)

5 tháng 7 2016

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1^2\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{cxy+ayz+bxz}{abc}\right)=1\)

Mà \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.\frac{0}{abc}=1\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.0=1\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(dpcm\right)\)

Chúc bạn học tốt 

1 cái T I C K nha cảm ơn

27 tháng 12 2017

bài ở đâu mà hay vậy bạn

8 tháng 11 2018

chịu khó lắm

Ok

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

8 tháng 11 2018

mik đăng dc 5 phút thì 5 phút sau mik lm dk rui