\(\begin{matrix}\\\end{matrix}\)Y x 42 + y x 57+ y = 25400
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,ĐK: \(x,y\ne-2\)
HPT<=> \(\left\{{}\begin{matrix}x\left(x+2\right)+y\left(y+2\right)=\left(x+2\right)\left(y+2\right)\left(1\right)\\x^2\left(x+2\right)^2+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x^2\left(x+2\right)^2+2xy\left(x+2\right)\left(y+2\right)+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\\x^2\left(x+2\right)^2+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\end{matrix}\right.\)
=> \(2xy\left(x+2\right)\left(y+2\right)=0\)
<=>\(2xy=0\) (do x+2 và y+2 \(\ne0\))
<=> \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Tại x=0 thay vào (1) có: \(y\left(y+2\right)=2\left(y+2\right)\) <=> y= \(\pm2\) => y=2 (vì y khác -2)
Tại y=0 thay vào (1) có: \(x\left(x+2\right)=2\left(x+2\right)\) => x=2
Vậy HPT có 2 nghiệm duy nhất (2,0),(0,2)
2, ĐK: \(y\ne-1\)
HPT <=> \(\left\{{}\begin{matrix}x^2=2\left(x+3\right)\left(y+1\right)\left(1\right)\\\frac{3x^2}{y+1}=4-x\end{matrix}\right.\)
=> \(\frac{6\left(3+x\right)\left(y+1\right)}{y+1}=4-x\)
<=> 6(x+3)=4-x
<=> \(14=-7x\)
<=> \(x=-2\) thay vào (1) có \(4=2\left(y+1\right)\)
<=>y=1\(\)( tm)
Vậy hpt có một nghiệm duy nhất (-2,1)
3,\(\left\{{}\begin{matrix}x^2-y=y^2-x\left(1\right)\\x^2-x=y+3\left(2\right)\end{matrix}\right.\)
PT (1) <=> \(\left(x-y\right)\left(x+y\right)+\left(x-y\right)=0\)
<=> (x-y)(x+y+1)=0
<=>\(\left[{}\begin{matrix}x=y\\y=-x-1\end{matrix}\right.\)
Tại x=y thay vào (2) có \(y^2-y=y+3\) <=> \(y^2-2y-3=0\) <=> (y-3)(y+1)=0 <=> \(\left[{}\begin{matrix}y=3\\y=-1\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Tại y=-1-x thay vào (2) có: \(x^2-x=-1-x+3\) <=> \(x^2=2\) <=> \(\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\) => \(\left[{}\begin{matrix}y=-1-\sqrt{2}\\y=-1+\sqrt{2}\end{matrix}\right.\)
Vậy hpt có 4 nghiệm (3,3),(-1,-1), ( \(\sqrt{2},-1-\sqrt{2}\)),( \(-\sqrt{2},-1+\sqrt{2}\))
4,\(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\left(1\right)\\xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=5\left(2\right)\end{matrix}\right.\)(đk:\(x\ne0,y\ne0\))
<=> \(\left\{{}\begin{matrix}\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)=\frac{9}{2}\\\left(y+\frac{1}{y}\right)\left(x+\frac{1}{x}\right)=5\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+\frac{1}{x}=u\\y+\frac{1}{y}=v\end{matrix}\right.\)
Có \(\left\{{}\begin{matrix}u+v=\frac{9}{2}\\uv=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\v\left(\frac{9}{2}-v\right)=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\\left(v-\frac{5}{2}\right)\left(v-2\right)=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\\left[{}\begin{matrix}v=\frac{5}{2}\\v=2\end{matrix}\right.\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}v=\frac{5}{2}\\u=2\end{matrix}\right.\\\left[{}\begin{matrix}v=2\\u=\frac{5}{2}\end{matrix}\right.\end{matrix}\right.\)
Tại \(\left\{{}\begin{matrix}v=\frac{5}{2}\\u=2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x+\frac{1}{x}=2\\y+\frac{1}{y}=\frac{5}{2}\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-2\right)\left(y-\frac{1}{2}\right)=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=1\\\left[{}\begin{matrix}y=2\\y=\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left[{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
Tại \(\left\{{}\begin{matrix}v=2\\u=\frac{5}{2}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x+\frac{1}{x}=\frac{5}{2}\\y+\frac{1}{y}=2\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}\left(x-2\right)\left(x-\frac{1}{2}\right)=0\\\left(y-1\right)^2=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\end{matrix}\right.\\y=1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left[{}\begin{matrix}x=\frac{1}{2}\\y=1\end{matrix}\right.\end{matrix}\right.\)
Vậy hpt có 4 nghiệm (1,2),( \(1,\frac{1}{2}\)) ,( 2,1),(\(\frac{1}{2},1\)).
10.
\(\left\{{}\begin{matrix}2x^2-3xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2xy-xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(2x-y+1\right)=0\\x^2+x+1=y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\y=2x+1\end{matrix}\right.\\x^2+x+1=y^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2+x+1=y^2\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x^2+x+1=y^2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2+x+1=x^2\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x^2+x+1=\left(2x+1\right)^2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\3x\left(x+1\right)=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=1\\\left[{}\begin{matrix}\left\{{}\begin{matrix}y=2x+1\\x=0\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x=-1\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y=-1\\\left\{{}\begin{matrix}x=0\\y=-\frac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=-1\\\left\{{}\begin{matrix}x=0\\y=-\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
Câu 1:
Từ PT(1) suy ra $x=7-2y$. Thay vào PT(2):
$(7-2y)^2+y^2-2(7-2y)y=1$
$\Leftrightarrow 4y^2-28y+49+y^2-14y+4y^2=1$
$\Leftrightarrow 9y^2-42y+48=0$
$\Leftrightarrow (y-2)(9y-24)=0$
$\Leftrightarrow y=2$ hoặc $y=\frac{8}{3}$
Nếu $y=2$ thì $x=7-2y=3$
Nếu $y=\frac{8}{3}$ thì $x=7-2y=\frac{5}{3}$
Câu 3: Bạn xem lại PT(2) là -x+y đúng không?
Câu 4:
$x^3-y^3=7$
$\Leftrightarrow (x-y)^3-3xy(x-y)=7$
$\Leftrightarrow 3^3-9xy=7$
$\Leftrightarrow xy=\frac{20}{9}$
Áp dụng định lý Viet đảo, với $x+(-y)=3$ và $x(-y)=\frac{-20}{9}$ thì $x,-y$ là nghiệm của pt:
$X^2-3X-\frac{20}{9}=0$
$\Rightarrow (x,-y)=(\frac{\sqrt{161}+9}{6}, \frac{-\sqrt{161}+9}{6})$ và hoán vị
$\Rightarrow (x,y)=(\frac{\sqrt{161}+9}{6}, \frac{\sqrt{161}-9}{6})$ và hoán vị.
\(1,\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\3-y+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}x-2x-1=3\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\left(-2\right)+1=-3\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}2x+3x-6=4\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\\ 4,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y+2=3y+8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\\ 5,\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\\dfrac{3+3y}{2}-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\3+3y-8y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{y+1}{2}\\y=-\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-\dfrac{1}{5}\end{matrix}\right.\)
a, Ta có : \(\left\{{}\begin{matrix}3x+2y=-2\\-x+4y=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3\left(4y-3\right)+2y=-2\\x=4y-3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}12y-9+2y=-2\\x=4y-3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}14y=7\\x=4y-3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=\frac{1}{2}\\x=\frac{4.1}{2}-3=-1\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(-1;\frac{1}{2}\right)\)
b, Ta có : \(\left\{{}\begin{matrix}x+2y=11\\5x-3y=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=11-2y\\5\left(11-2y\right)-3y=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=11-2y\\55-10y-3y=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=11-2y\\-13y=-52\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=11-2.4=3\\y=4\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;4\right)\)
c, Ta có : \(\left\{{}\begin{matrix}10x-9y=1\\15x+21y=36\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}30x-27y=3\\30x+42y=72\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}10x-9y=1\\-69y=-69\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}10x-9=1\\y=1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(1;1\right)\)
d, Ta có : \(\left\{{}\begin{matrix}2x+y=3\\x+y=2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3-2x\\x+2-2x=2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3-2x\\2-x=2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3-2.0=3\\x=0\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(0;3\right)\)
e, Ta có : \(\left\{{}\begin{matrix}x+y=2\\2x-3y=9\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=2-y\\2\left(2-y\right)-3y=9\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=2-y\\4-2y-3y=9\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=2-y\\-5y=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=2+1=3\\y=-1\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;-1\right)\)
f, Ta có : \(\left\{{}\begin{matrix}x-2y=11\\5x+3y=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=11+2y\\5\left(11+2y\right)+3y=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=11+2y\\55+10y+3y=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=11+2y\\13y=-52\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;-4\right)\)
g, Ta có : \(\left\{{}\begin{matrix}3x-y=5\\2x+3y=18\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3x-5\\2x+3\left(3x-5\right)=18\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3x-5\\2x+9x-15=18\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3x-5\\11x=33\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=9-5=4\\x=3\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;4\right)\)
h, Ta có : \(\left\{{}\begin{matrix}5x+3y=-7\\3x-y=-8\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}5x+3\left(3x+8\right)=-7\\y=3x+8\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}5x+9x+24=-7\\y=3x+8\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}14x=-31\\y=3x+8\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=-\frac{31}{14}\\y=3.\left(-\frac{31}{14}\right)+8=\frac{19}{14}\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(-\frac{31}{14};\frac{19}{14}\right)\)
a: \(\left\{{}\begin{matrix}3x-2y=4\\2x+y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x-2y=4\\4x+2y=10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}7x=14\\2x+y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2\\y=5-2x=5-2\cdot2=1\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}-x+2y=2\\2x-y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2x+4y=4\\2x-y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=3\\x-2y=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=1\\x=-2+2y=-2+2\cdot1=0\end{matrix}\right.\)
c: \(\left\{{}\begin{matrix}2x-y=13\\y-5=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-y=13\\y=-7+5=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=y+13=-2+13=11\\y=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{11}{2}\\y=-2\end{matrix}\right.\)
d: \(\left\{{}\begin{matrix}3x+y=8\\2x-3y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}9x+3y=24\\2x-3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11x=25\\3x+y=8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{25}{11}\\y=8-3x=8-3\cdot\dfrac{25}{11}=8-\dfrac{75}{11}=\dfrac{13}{11}\end{matrix}\right.\)
\(a) \begin{cases}x=y+4\\2x+3=0\end{cases}\Leftrightarrow\begin{cases}x = y + 4\\2x = -3\end{cases}\Leftrightarrow\begin{cases}\dfrac{-3}{2} = y + 4\\x = \dfrac{-3}{2}\end{cases}\Leftrightarrow\begin{cases}y = \dfrac{-11}{2}\\x = \dfrac{-3}{2}\end{cases}\\b) \begin{cases}2x + y = 7\\3y - x = 7\end{cases}\Leftrightarrow\begin{cases}2x + y = 7\\6y - 2x = 14\end{cases}\Leftrightarrow\begin{cases}2x + y = 7\\7y = 21\end{cases}\Leftrightarrow\begin{cases}2x + 3 = 7\\y = 3\end{cases}\Leftrightarrow\begin{cases}x=2\\y=3\end{cases}\\ c) \begin{cases} 5x + y = 3 \\ -x - \dfrac{1}{5}y=\dfrac{-3}{5} \end{cases} \Leftrightarrow \begin{cases} 5x + y = 3 \\ 5x + y = 3 \end{cases} (luôn\ đúng) \Leftrightarrow Phương\ trình\ vô\ số\ nghiệm \\d) \begin{cases} 3x - 5y = -18 \\ x - 5 = 2y \end{cases} \Leftrightarrow \begin{cases} 3x - 5y = -18 \\ 3x - 6y = 15 \end{cases} \Leftrightarrow \begin{cases} x - 5 = 2.(-33)\\ y = -13 \end{cases} \Leftrightarrow \begin{cases}x = -61\\y=-33 \end{cases} \)
yx(42+57+1)=25400
y x 100=25400
=> y=254
\(y\times42+y\times57+y=25400\)
\(y\times\left(42+57+1\right)=25400\)
\(y\times100=25400\)
\(y=25400:100\)
\(y=254\)