Cho tam giác ABC cân A. Lấy điểm M trên cạnh AB, điểm N trên cạnh AC sao cho BM = CN. Chứng minh MN//BC.
(T.B. Tại câu này mà mk đc có 7 điểm bài kiểm tra Toán TT_TT. À mà dạng bài này là dạng cơ bản đấy, các bạn giải thử xem sao nhé)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)
\(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)
Do đó: \(\widehat{AMN}=\widehat{ABC}\)
mà hai góc này ở vị trí đồng vị
nên MN//BC
Vì AB=AC(do tam giác ABC cân tại A)
BM=CN(gt)
=>AM=AN
Tam giác AMN có AM=AN(cmt)
=> Tam giác AMN cân tại A
=> góc N= (180độ-góc A)/2(hq) (1)
Tam giác ABC cân tại A(gt)=> góc B= (180độ-góc A)/2(hq) (2)
(1);(2)=> góc B=góc N
Xét tam giác BMK và tam giác CNK có:
KM=KN(do K là trung điểm MN)
góc B=góc N(cmt)
BM=CN(gt)
=> Tam giác BMK= tam giác CNK(cgc)
=> góc MKB= góc CKN(2 góc tương ứng), mà 2 góc này ở vị trí đối đỉnh
=> B.K.C thẳng hàng(đpcm)
tk nha bạn
thank you bạn
(^_^)
a: AM=6-2=6cm
AN=12-3=9cm
=>AM/AB=AN/AC
=>MN//BC
b: Xet ΔAKC có NI//KC
nên NI/KC=AI/AK
Xét ΔABK có MI//BK
nên MI/BK=AI/AK
=>NI/KC=MI/BK
c: NI/KC=MI/BK
KC=KB
=>NI=MI
=>I là tđ của MN
Ta có: \(AB-BM=AC-CN\)
\(\Rightarrow AM=AN\)
\(\Rightarrow\Delta AMN\) cân tại A
\(\Rightarrow\widehat{AMN}=\widehat{ANM}\)
Áp dụng t/c tổng 3 góc trong 1 t/g ta có:
\(\widehat{AMN}+\widehat{ANM}+\widehat{BAC}=180^o\)
\(\Rightarrow\widehat{AMN}=\frac{180^o-\widehat{BAC}}{2}\left(1\right)\)
Do \(\Delta ABC\) cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Áp dụng tc tổng 3 góc trong 1 t/g ta có:
\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^o\)
\(\Rightarrow\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)
mà 2 góc này ở vị trí đồng vị nên \(MN\) // \(BC.\)
Cảm ơn bạn nhiều nha. Mà nè sao mk cho là ABC cân rùi mà chứng minh lại làm chi?