câu 1:chứng minh.
a)20+2+22+23+...+249 chia hết cho 3
b)20+2+23+...+2101 chia hết cho 7
c)Tính: A=20+2+22+...+2100
Giúp mình giải bài tập,mk thả tim cho.
hạn là 1h30p ngày 15/12/2022. làm ơn đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}=2\left(1+2^2+2^3+2^4\right)+...+2^{96}\left(1+2^2+2^3+2^4\right)=2.31+2^6.31+...+2^{96}.31=31\left(2+2^6+...+2^{96}\right)⋮31\)
\(A=2^0+2^1+2^2+...+2^{59}\)
\(=2^0\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{57}\left(1+2+2^2\right)\)
\(=2^0.7+2^3.7+...+2^{57}.7\)
\(=7\left(2^0+2^3+...+2^{57}\right)⋮7\)
a) \(A=2+2^2+2^3+...+2^{20}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)
\(A=2\cdot\left(1+3\right)+2^3\cdot\left(1+3\right)+...+2^{59}\cdot\left(1+3\right)\)
\(A=3\cdot\left(2+2^3+...+2^{59}\right)\)
Vậy A chia hết cho 3
________
\(A=2+2^2+2^3+...+2^{20}\)
\(A=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\)
\(A=2\cdot\left(1+4\right)+2^2\cdot\left(1+4\right)+...+2^{58}\cdot\left(1+4\right)\)
\(A=5\cdot\left(2+2^2+...+2^{58}\right)\)
Vậy A chia hết cho 5
1: \(A=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{97}\right)\)
\(=30\left(1+2^4+...+2^{96}\right)⋮30\)
2:
\(B=3+3^2+3^3+...+3^{2022}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2021}+3^{2022}\right)\)
\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{2020}\left(3+3^2\right)\)
\(=12\left(1+3^2+...+3^{2020}\right)⋮12\)
A = 20 + 21 + 22 + 23 + 24 + 25 … + 299
A=( 20 + 21 + 22 + 23 + 24) +( 25 … + 299)
A= 20.(20 + 21 + 22 + 23 + 24)+25.( 25 … + 299)
A= 1. 31+ 25.31… + 295.31
A= 31. (1+25...+295)
KL: ......
\(A=2^0+2^1+2^2+2^3+2^4+...+2^{99}=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{95}\left(2^0+2^1+2^2+2^3+2^4\right)=31+31.2^5+...+31.2^{95}=31\left(1+2^5+...+2^{95}\right)⋮31\)
a, \(\dfrac{7}{22}\) - \(\dfrac{15}{23}\) + \(\dfrac{2022}{2023}\) - \(\dfrac{8}{23}\) + \(\dfrac{15}{22}\)
= ( \(\dfrac{7}{22}\) + \(\dfrac{15}{22}\)) - ( \(\dfrac{15}{23}+\dfrac{18}{23}\)) + \(\dfrac{2022}{2023}\)
= \(\dfrac{22}{22}\) - \(\dfrac{23}{23}\) + \(\dfrac{2022}{2023}\)
= 1 - 1 + \(\dfrac{2022}{2023}\)
= \(\dfrac{2022}{2023}\)
b, - \(\dfrac{2}{11}\) + 5\(\dfrac{5}{6}\) ( 14\(\dfrac{1}{5}\) - 11\(\dfrac{1}{5}\)): 5\(\dfrac{1}{2}\)
= - \(\dfrac{2}{11}\) + \(\dfrac{35}{6}\) ( \(\dfrac{71}{5}\) - \(\dfrac{56}{5}\)) : \(\dfrac{11}{2}\)
= - \(\dfrac{2}{11}\) + \(\dfrac{35}{6}\) . \(\dfrac{15}{5}\) : \(\dfrac{11}{2}\)
= - \(\dfrac{2}{11}\) + \(\dfrac{35}{2}\) \(\times\) \(\dfrac{2}{11}\)
= - \(\dfrac{2}{11}\) + \(\dfrac{35}{11}\)
= \(\dfrac{33}{11}\)
= 3
c, 2000 + { 20 - [ 4.20220 - (32 + 5):2] }
= 2000 + { 20 - [ 4.1 - (9+5):2]}
= 2000 + { 20 - [ 4 - 14 : 2 ]}
= 2000 + { 20 - [ 4 -7]}
= 2000 + { 20 - (-3)}
= 2000 + 23
= 2023
a: \(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{48}\left(1+2\right)\)
\(=3\left(1+2^2+...+2^{48}\right)⋮3\)
b: \(2^0+2^1+2^2+...+2^{101}\)
\(=\left(1+2+2^2\right)+...+2^{99}\left(1+2+2^2\right)\)
\(=7\left(1+...+2^{99}\right)⋮7\)
c: 2A=2+2^2+...+2^101
=>A=2^101-1