biet ab-ac+bc=c^2-1 tinh gia tri bieu thuc b=\(\frac{a}{b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thế a=-5 ; b=2 ; c=1 vào biểu thức |a+b-c| được:
|-5+2-1| = |-4| = 4
Câu hỏi của Conan Kudo - Toán lớp 8 - Học toán với OnlineMath
Bạn tham khảo link trên!
a. Tại x=\(\frac{-1}{2}\), ta có:
\(\left(\frac{-1}{2}\right)^2+4.\left(\frac{-1}{2}\right)+3=\frac{1}{4}+\left(-2\right)+3=\frac{5}{4}\)
b. Ta có:
\(x^2+4x+3=0\)
\(\Rightarrow x^2+x+3x+3=0\)
\(\Rightarrow\left(x^2+x\right)+\left(3x+3\right)=0\)
\(\Rightarrow x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+1=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\x=-3\end{cases}}}\)
Vậy \(x=-1;x=-3\)
Thêm đk \(a,b,c\ne0\)
Ta có: \(\frac{ab}{a+b}=\frac{1}{3}\Rightarrow\frac{a+b}{ab}=3\)
\(\frac{bc}{b+c}=\frac{1}{4}\Rightarrow\frac{bc}{b+c}=4\)
\(\frac{ca}{c+a}=\frac{1}{5}\Rightarrow\frac{c+a}{ca}=5\)
\(\Rightarrow\frac{a+b}{ab}+\frac{b+c}{bc}+\frac{c+a}{ca}=12\)
\(\Leftrightarrow\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}=12\)
\(\Leftrightarrow2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=12\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)
\(ab-ac+bc=c^2-1\)
\(ab-ac+bc-c^2=-1\)
\(a\left(b-c\right)+c\left(b-c\right)=-1\)
\(\Leftrightarrow\left(a+c\right)\left(b-c\right)=-1\)
=> a + c = 1 thì b - c = - 1; a + c = - 1 thì b - c = 1 => a + c và b - c đối nhau
\(\Rightarrow a+c=-\left(b-c\right)\)
\(a+c=-b+c\)
\(\Rightarrow a=-b\)
\(\Rightarrow B=\frac{a}{b}=-1\)