Tính giá trị biểu thức
A=2+5+8+......+2012
B=<1-1/2>.<1-1/3>........<1-1/2011>.<1-1/2012>
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) Số số hạng là \(\left(40-2\right):2+1=20\left(số\right)\)
Tổng là \(\left(40+2\right)\times20:2=420\)
\(b,\) Số số hạng là \(\left(39-1\right):2+1=20\left(số\right)\)
Tổng là \(\left(39+1\right)\times20:2=400\)
a) 2 + 4 + 6 + 8 + ... + 34 + 36 + 38 + 40
= ( 2 + 42 ) + ( 4 + 38 ) + .... + ( 20 + 22 )
= 42 \(\times\) 10
= 420
b) 1 + 3 + 5 + 7 + ... + 35 + 37 + 39
= ( 1 + 39 ) + ( 3 + 37 ) + ...+ ( 19 + 21 )
= 40 \(\times\) 10
= 400
a) 7/5 x 3/4 : 4/5 = 21/20 : 4/5
= 21/16
Tìm x:
b) x - 3/9 = 8/7
x = 8/7 + 3/9
X = 31/21
a)[(-15).8]:4
=-120:4
=30
b)[(-125):(-5)].(-13)
=25.(-13)
=325
a) 27 + 34 + 66 = 27 + (34 + 66) = 27 + 100 = 127 | b) 7 x 5 x 2 = 7 x (5 x 2) = 7 x 10 = 70 |
a: \(17628+3547\cdot6\)
\(=17628+21282\)
\(=38910\)
b: \(57924-15760:5\)
\(=57924-3152\)
=54772
Tính giá trị biểu thức
A= \(\left(4x^5+4x^4-5x^3+2x-2\right)^2+2020\) khi \(x=\dfrac{\sqrt{5}-1}{2}\)
Lời giải:
$x=\frac{\sqrt{5}-1}{2}$
$2x=\sqrt{5}-1$
$2x+1=\sqrt{5}\Rightarrow (2x+1)^2=5$
$\Leftrightarrow 4x^2+4x-4=0$
$\Leftrightarrow x^2+x-1=0$
Khi đó:
\((4x^5+4x^4-5x^3+2x-2)^2\)
\(=[4x^3(x^2+x-1)-x^3+2x-2]^2\)
\(=(-x^3+2x-2)^2=[-x(x^2+x+1)+(x^2+x-1)-1]^2\)
\(=(-1)^2=1\)
a) \(\dfrac{1}{3}+\dfrac{4}{3}\times\dfrac{1}{2}=\dfrac{1}{3}+\dfrac{4}{6}=\dfrac{1}{3}+\dfrac{2}{3}=\dfrac{3}{3}=1\)
b) \(\dfrac{3}{5}\times\dfrac{4}{7}:\dfrac{16}{21}=\dfrac{3}{5}\times\dfrac{4}{7}\times\dfrac{21}{16}=\dfrac{12}{35}\times\dfrac{21}{16}=\dfrac{252}{560}=\dfrac{9}{20}\)
\(A=x^4+y^4+\left(x+y\right)^4\)
\(=x^4+y^4+x^4+4x^3y+6x^2y^2+4xy^3+y^4\)
\(=2y^4+4y^2\left(x^2+xy\right)+2\left(x^4+2x^3y+x^2y^2\right)\)
\(=2y^4+4y^2\left(x^2+xy\right)+2\left(x^2+xy\right)^2\)
\(=2\left(y^2+xy+x^2\right)^2=2.5^2=50\)