K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 12 2022

Không gian mẫu: \(C_{100}^5\)

Trong 100 số từ 1 tới 100 có 50 số chẵn và 50 số lẻ

Để tổng 5 số là 1 số chẵn ta có các trường hợp: (5 số đều chẵn), (1 số chẵn 4 số lẻ), (3 số chẵn 2 số lẻ)

\(\Rightarrow C_{50}^5+C_{50}^1C_{50}^4+C_{50}^3C_{50}^2\) trường hợp thỏa mãn

Xác suất: \(P=\dfrac{C_{50}^5+C_{50}^1C_{50}^4+C_{50}^3C_{50}^2}{C_{100}^5}=...\)

NV
21 tháng 12 2022

a.

Trong tam giác A'BC ta có: I là trung điểm BA', M là trung điểm BC

\(\Rightarrow IM\) là đường trung bình tam giác A'BC

\(\Rightarrow IM||A'C\)

\(\Rightarrow IM||\left(ACC'A'\right)\)

Do \(A\in\left(AB'M\right)\cap\left(ACC'A'\right)\) và \(\left\{{}\begin{matrix}IM\in\left(AB'M\right)\\A'C\in\left(ACC'A'\right)\\IM||A'C\end{matrix}\right.\)

\(\Rightarrow\) Giao tuyến của (AB'M) và (ACC'A') là đường thẳng qua A và song song A'C

Qua A kẻ đường thẳng d song song A'C

\(\Rightarrow d=\left(AB'M\right)\cap\left(ACC'A'\right)\)

b.

I là trung điểm AB', E là trung điểm AM

\(\Rightarrow IE\) là đường trung bình tam giác AB'M \(\Rightarrow IE||B'M\) (1)

Tương tự ta có IN là đường trung bình tam giác AA'B' \(\Rightarrow IN||A'B'\) (2)

(1);(2) \(\Rightarrow\left(EIN\right)||\left(A'B'M\right)\)

 

NV
21 tháng 12 2022

c.

Trong mp (BCC'B'), qua K kẻ đường thẳng song song B'M lần lượt cắt BC và B'C' tại D và F

\(DF||B'M\Rightarrow DF||IE\Rightarrow DF\subset\left(EIK\right)\)

Trong mp (ABC), nối DE kéo dài cắt AB tại G

\(\Rightarrow G\in\left(EIK\right)\)

Trong mp (A'B'C'), qua F kẻ đường thẳng song song A'C' cắt A'B' tại H

Do IK là đường trung bình tam giác A'BC' \(\Rightarrow IK||A'B'\)

\(\Rightarrow FH||IK\Rightarrow H\in\left(EIK\right)\)

\(\Rightarrow\) Tứ giác DFHG là thiết diện (EIK) và lăng trụ

Gọi J là giao điểm BK và B'M \(\Rightarrow J\) là trọng tâm tam giác B'BC

\(\Rightarrow\dfrac{BJ}{BK}=\dfrac{2}{3}\)

Áp dụng talet: \(\dfrac{BM}{BD}=\dfrac{BJ}{BK}=\dfrac{2}{3}\Rightarrow BD=\dfrac{3}{2}BM=\dfrac{3}{2}.\dfrac{1}{2}BC=\dfrac{3}{4}BC\)

\(\Rightarrow MD=\dfrac{1}{4}BC=\dfrac{1}{2}CM\Rightarrow D\) là trung điểm CM

\(\Rightarrow DE\) là đường trung bình tam giác ACM

\(\Rightarrow DE||AC\Rightarrow DE||FH\)

\(\Rightarrow\) Thiết diện là hình thang

10 tháng 2 2023

Bán kính hình tròn:
\(18,84:3,14:2=3\left(cm\right)\)
Diện tích hình tròn:
\(3\times3\times3,14=28,26\left(cm^2\right)\)
Đường kính hình tròn:
\(3\times2=6\left(cm\right)\)
Diện tích hình thoi:
\(\dfrac{6\times6}{2}=18\left(cm^2\right)\)
Diện tích phần gạch chéo:
\(28,26-18=10,26\left(cm^2\right)\)

NV
10 tháng 4 2022

4b.

\(\dfrac{\pi}{2}< a< \pi\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\dfrac{4}{5}\)

\(\Rightarrow tana=\dfrac{sina}{cosa}=-\dfrac{3}{4}\)

\(tan\left(a+\dfrac{\pi}{3}\right)=\dfrac{tana+tan\left(\dfrac{\pi}{3}\right)}{1-tana.tan\left(\dfrac{\pi}{3}\right)}=\dfrac{-\dfrac{3}{4}+\sqrt{3}}{1-\left(-\dfrac{3}{4}\right).\sqrt{3}}=...\)

c.

\(\dfrac{3\pi}{2}< a< 2\pi\Rightarrow cosa>0\Rightarrow cosa=\sqrt{1-sin^2a}=\dfrac{5}{13}\)

\(cos\left(\dfrac{\pi}{3}-a\right)=cos\left(\dfrac{\pi}{3}\right).cosa+sin\left(\dfrac{\pi}{3}\right).sina=\dfrac{1}{2}.\dfrac{5}{13}+\left(-\dfrac{12}{13}\right).\dfrac{\sqrt{3}}{2}=...\)

5:

a: sin x=2*cosx

\(A=\dfrac{6cosx+2cosx-4\cdot8\cdot cos^3x}{cos^3x-2cosx}\)

\(=\dfrac{8-32cos^2x}{cos^2x-2}\)

b: VT=sin^4(pi/2-x)+cos^4(x+pi/2)+6*1/2*sin^22x+1/2*cos4x

=cos^4x+sin^4x+3*sin^2(2x)+1/2*(1-2*sin^2(2x))

=1-2*sin^2x*cos^2x+3*sin^2(2x)+1/2-sin^2(2x)

==3/2=VP

NV
27 tháng 3 2022

23.

Gọi I là trung điểm MN \(\Rightarrow I\left(3;3\right)\)

\(\Rightarrow\overrightarrow{IN}=\left(2;-1\right)\Rightarrow IN=\sqrt{5}\)

Phương trình đường tròn đường kính MN, nhận I là tâm và có bán kính \(R=IN\) là:

\(\left(x-3\right)^2+\left(y-3\right)^2=5\)

Thay tọa độ E vào pt ta được:

\(\left(x-3\right)^2+4=5\Rightarrow\left(x-3\right)^2=1\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)  \(\Rightarrow x_1x_2=8\)

Cả 4 đáp án của câu này đều sai

NV
27 tháng 3 2022

24.

Gọi \(M\left(x;y\right)\) là 1 điểm bất kì thuộc \(\Delta\)

Do \(\Delta\) là đường phân giác của góc tạo bởi d và k nên:

\(d\left(M;d\right)=d\left(M;k\right)\Leftrightarrow\dfrac{\left|2x+y\right|}{\sqrt{2^2+1^2}}=\dfrac{\left|x+2y-3\right|}{\sqrt{1^2+2^2}}\)

\(\Leftrightarrow\left|2x+y\right|=\left|x+2y-3\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+y=x+2y-3\\2x+y=-x-2y+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-y+3=0\\x+y-1=0\end{matrix}\right.\)

- Với \(x-y+3=0\), ta có: 

\(\left(x_E-y_E+3\right)\left(x_F-y_F+3\right)=2.1=2>0\Rightarrow E;F\) nằm cùng phía so với \(x-y+3=0\) (thỏa mãn)

- Với \(x+y-1=0\) ta có:

\(\left(x_E+y_E-1\right)\left(x_F+y_F-1\right)=2.7=14>0\Rightarrow E;F\) nằm cùng phía so với \(x+y-1=0\) (thỏa mãn)

Vậy cả đáp án A và D đều đúng

Tương tự như câu 23, câu 24 đề bài tiếp tục sai

4:

a: -90<a<0

=>cos a>0

cos^2a=1-(-4/5)^2=9/25

=>cosa=3/5

\(sin\left(45-a\right)=sin45\cdot cosa-cos45\cdot sina=\dfrac{\sqrt{2}}{2}\left(cosa-sina\right)\)

\(=\dfrac{\sqrt{2}}{2}\left(\dfrac{3}{5}-\dfrac{4}{5}\right)=\dfrac{-\sqrt{2}}{10}\)

b: pi/2<a<pi

=>cosa<0

cos^2a+sin^2a=0

=>cos^2a=16/25

=>cosa=-4/5

tan a=3/5:(-4/5)=-3/4

\(tan\left(a+\dfrac{pi}{3}\right)=\dfrac{tana+\dfrac{tanpi}{3}}{1-tana\cdot tan\left(\dfrac{pi}{3}\right)}\)

\(=\dfrac{-\dfrac{3}{4}+\sqrt{3}}{1-\dfrac{-3}{4}\cdot\sqrt{3}}=\dfrac{48-25\sqrt{3}}{11}\)

c: 3/2pi<a<pi

=>cosa>0

cos^2a+sin^2a=1

=>cos^2a=25/169

=>cosa=5/13

cos(pi/3-a)

\(=cos\left(\dfrac{pi}{3}\right)\cdot cosa+sin\left(\dfrac{pi}{3}\right)\cdot sina\)

\(=\dfrac{5}{13}\cdot\dfrac{1}{2}+\dfrac{-12}{13}\cdot\dfrac{\sqrt{3}}{2}=\dfrac{5-12\sqrt{3}}{26}\)

28 tháng 12 2021

a/

\(\frac{72}{\left(x-2\right)^2}=8\left(x\ne2\right)\Rightarrow\left(x-2\right)^2=9=3^2\)

\(\Rightarrow\left|x-2\right|=3\)

+ Nếu \(x-2\ge0\Rightarrow x\ge2\Rightarrow x-2=3\Rightarrow x=5\) (thoả mãn đk \(x\ge2\) )

+ Nếu \(x-2< 0\Rightarrow x< 2\Rightarrow2-x=3\Rightarrow x=-1\) (Thoả mãn đk \(x< 2\) )

b/

\(75-5\left(x-3\right)^3=700\Rightarrow\left(x-3\right)^3=-125=\left(-5\right)^3\)

\(\Rightarrow x-3=-5\Rightarrow x=-2\)