ba lớp 7a,7b,7c của một trường cùng tham gia trồng cây .Số cây của 3 lớp trồng được lần lượt tỉ lệ với các số 4;5;6 và lớp 7c trồng nhiều hơn lớp 7a là 60 cây . Hỏi mỗi lớp trồng đước bao nhiêu cây?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cây lớp 7A,7B,7C trồng được lần lượt là a(cây),b(cây),c(cây)
(Điều kiện: \(a,b,c\in Z^+\))
Số cây của ba lớp trồng được lần lượt tỉ lệ với 4;5;6 nên \(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{6}\)
Lớp 7C trồng được nhiều hơn lớp 7A 60 cây nên c-a=60
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{c-a}{6-4}=\dfrac{60}{2}=30\)
=>\(a=30\cdot4=120;b=30\cdot5=150;c=30\cdot6=180\)
Vậy: Số cây lớp 7A,7B,7C trồng được lần lượt là 120 cây, 150 cây, 180 cây
Gọi số cây lớp 7A,7B,7C trồng được lần lượt là a(cây), b(cây),c(cây)
(Điều kiện: \(a\in Z^+;b\in Z^+;c\in Z^+\))
Số cây của lớp 7A,7B,7C lần lượt tỉ lệ với 6;4;5 nên ta có:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{5}\)
Tổng số cây trồng được của 2 lớp 7A,7B nhiều hơn của lớp 7C là 50 cây nên ta có: a+b-c=50
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b-c}{6+4-5}=\dfrac{50}{5}=10\)
=>a=60;b=40;c=50
Vậy: Lớp 7A trồng được 60 cây
Lớp 7B trồng được 40 cây
Lớp 7C trồng được 50 cây
Gọi x,y,z (cây) lần lượt là số cây trồng được của ba lớp 7A, 7B và 7C ( x, y, z \(\in\) N*)
Do số cây trồng được của ba lớp 7A,7B,7C lần lượt tỉ lệ với 6 ; 4 ; 5 nên:
\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{5}\)
Do tổng số cây của lớp 7B và 7C trồng được nhiều hơn của lớp 7A là 15 cây nên:
\(y+z-x=15\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{y+z-x}{4+5-6}=\dfrac{15}{3}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5\cdot6=30\\y=5\cdot4=20\\z=5\cdot5=25\end{matrix}\right.\)
Vậy ...
#Đạt Đang Bận Thở
Gọi số cay trồng được của lớp 7A,7B,7C lần lượt là a,b,c
Theo đề, ta có: a/6=b/4=c/5
Áp dụng tính chất của DTSBN, ta được:
a/6=b/4=c/5=(a-c)/(6-5)=15
=>a=90; b=60; c=75
Gọi số cây trồng được của lớp 7A , 7B , 7C lần lượt là : \(x;y;z\)
Ta có tỉ lệ \(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{5}\)
Tổng số cây lớp 7B và 7C nhiều hơn lớp 7A là 15 cây
\(\Rightarrow y+z-x=15\)
Theo tính chất dãy tỉ số bằng nhau
\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{y+z-x}{4+5-6}=\dfrac{15}{3}=5\\ \Rightarrow\left\{{}\begin{matrix}x=5.6=30\\y=4.5=20\\z=5.5=25\end{matrix}\right.\)
Vậy lớp 7A trồng được 30 cây , 7B trồng được 20 cây , 7C trồng được 25 cây
Gọi ba lớp `7A;7B;7C` tham gia trồng cây lần lượt là `a,b,c` `( a,b,c ∈ N)`
Theo bài ra ta có : `a/6=b/4=c/5` và `b+c-a=15`
ADTC dãy tỉ số bằng nhau ta có :
` a/6=b/4=c/5=(b+c-a)/(4+5-6)=15/3=5`
`=>a/6=5=>a=5.6=30`
`=>b/4=5=>b=5.4=20`
`=>c/5=5=>c=5.5=25`
Vậy ba lớp `7A;7B;7C` tham gia trồng cây lần lượt được `30;20;25` ( cây ) .
Gọi số cây 3 lớp trồng được lần lượt là : a , b , c \(\left(a,b,c\inℕ^∗\right)\)
Theo bà ra , ta có : \(\hept{\begin{cases}\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\\c-a=60\end{cases}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{c-a}{6-4}=\frac{60}{2}=30\)
\(\Rightarrow b=30.5=150\left(TM\right)\)
Vậy số cây lớp 7B trồng được là 150 ( cây )
Gọi số học sinh lớp 7A là a
7B là b (a;b;c\(\inℕ^∗\))
7C là c
Theo bài ra ta có:
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\)và c=a+60
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{4}=\frac{c}{6}=\frac{c-a}{6-4}=\frac{60}{2}=30\)
\(\Rightarrow\frac{b}{5}=30\)\(\Rightarrow b=150\)
Vậy số cây trồng được của lớp 7B là 150 cây.
Gọi số cây trồng được của 3 lớp lần lượt là a,b,c (a,b,c >0)
Vì ba lớp 7A,7B,7C tham gia trồng cây biết số cây trồng được của ba lớp là 180 cây
a+b+c=180
Vì số cây trồng được của 7A,7B,7C lần lượt tỉ lệ với 1,2,3
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\)
áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a+b+c}{1+2+3}=\dfrac{180}{6}=30\)
⇒\(\left\{{}\begin{matrix}a=30.1=30\\b=30.2=60\\c=30.3=90\end{matrix}\right.\)
Vậy ......
Gọi số cây 3 lớp 7A, 7B, 7C trồng được lần lượt là a,b,c(a,b,c>0)
Áp dụng t/c dtsbn ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{190}{10}=19\)
\(\dfrac{a}{2}=19\Rightarrow a=38\\ \dfrac{b}{3}=19\Rightarrow b=57\\ \dfrac{c}{5}=19\Rightarrow c=95\)
Gọi số cây của 3 lớp 7A,7B,7C lần lượt là a,b,c
Do a,b,c tỉ lệ thuận với 2,3,5
\(\Rightarrow\) \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{190}{10}=19\)
\(\dfrac{a}{2}=19\Rightarrow a=38\)
\(\dfrac{b}{3}=19\Rightarrow b=57\)
\(\dfrac{c}{5}=19\Rightarrow c=95\)
\(Vậy...\)
Gọi số cây ba lớp 7A, 7B, 7C là x,y,z(cây, x,y,z0)
Theo đề bài, ta có:
Tổng số cây 3 lớp trồng được là 60 cây
x+y+z=60
Vì số cây 3 lớp 7A,7B,7C lần lượt tỉ lệ với 4;5;6\(\Rightarrow\)\(\dfrac{x}{4}\)=\(\dfrac{y}{5}\)=\(\dfrac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}\)=\(\dfrac{y}{5}\)=\(\dfrac{z}{6}\)=\(\dfrac{x+y+z}{4+5+6}\)=\(\dfrac{60}{15}\)=4
\(\Rightarrow\)x=4.4=16
y=5.4=20
z=6.4=24
Vậy Lớp 7A trồng đc 16 cây;
Lớp 7B trồng đc 20 cây;
Lớp 7C trồng đc 24 cây
Lời giải:
Gọi số cây trồng được của 3 lớp lần lượt là $a,b,c$ (cây)
Theo bài ra ta có:
$\frac{a}{4}=\frac{b}{5}=\frac{c}{6}$ và $c-a=60$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{c-a}{6-4}=\frac{60}{2}=30$
$\Rightarrow a=4.30=120; b=5.30=150; c=6.30=180$ (cây)