K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho tam giác ABC vuông tại A trung tuyến AM kẻ MD vuông góc với AB , D thuộc AB ; MH vuông góc với AB , H thuộc AC ; E là trung điểm đối xứng với M qua D                                                                                                        a) Chứng minh : Tứ giác ADMH là hình chữ nhật                                                                                                    B) Chứng minh : Tứ giác AMBE là hình thoi                   ...
Đọc tiếp

Cho tam giác ABC vuông tại A trung tuyến AM kẻ MD vuông góc với AB , D thuộc AB ; MH vuông góc với AB , H thuộc AC ; E là trung điểm đối xứng với M qua D                                                                                                        a) Chứng minh : Tứ giác ADMH là hình chữ nhật                                                                                                    B) Chứng minh : Tứ giác AMBE là hình thoi                                                                                                                C) Gọi I là giao điểm của AM và DH , chứng minh ba điểm C;I;E thẳng hàng

1

a: góc ADM=góc AHM=góc DAH=90 độ

=>ADMH là hình chữ nhật

b: Xét ΔACB có

M là trung điểm của BC

MD//AC

=>D là trung điểm của AB

Xét tứ giác AMBE có

D là trung điểm chung của AB và ME

=>AMBE là hình bình hành

mà MA=MB

nên AMBE là hình thoi

c:ADMH là hcn

=>I là trung điểm chung của AM và DH

Xét tứ giác ACME có

ME//AC

ME=AC

=>ACME là hbh

mà I là trung điểm của AM

nên i là trung điểm của CE

=>C,I,E thẳng hàng

6 tháng 11 2015

tick cho minh roi minh lam cho

23 tháng 12 2021

b: S=12cm2

a: Xét tứ giác ADME có 

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

Do đó: ADME là hình chữ nhật

23 tháng 12 2021

\(a,\) Vì \(\widehat{AEM}=\widehat{ADM}=\widehat{EAD}=90^0\) nên ADME là hình chữ nhật

\(b,S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)

\(c,ADME\) là hình vuông \(\Leftrightarrow AM=AE\)

Mà D là trung điểm BC, \(MD\text{//}AC\left(\bot AB\right);ME\text{//}AB\left(\bot AC\right)\) nên M,E lần lượt là trung điểm AB,AC

Do đó ADME là hình vuông \(\Leftrightarrow AM=AE\Leftrightarrow2AM=2AE\Leftrightarrow AB=AC\)

\(\Leftrightarrow\Delta ABC\) vuông cân tại A 

a: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

nên ADME là hình chữ nhật

b: Xét tứ giác PEDQ có

M là trung điểm chung của PD và EQ

PD vuông góc với EQ

Do đó: PEDQ là hình thoi