Một hộp đựng 9 viên bi trong đó có 4 viên bi đỏ và 5 viên bi xanh. Lấy ngẫu nhiên từ hộp 3 viên bi. Tìm xác suất để 3 viên bi lấy ra có đúng 2 viên bi màu xanh.giúp em với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Để xác định biến cố, ta xét các trường hợp sau:
+) 2 bi xanh và 1 bi đỏ, suy ra có C 5 2 . C 4 1 = 40 cách.
+) 3 bi xanh và 0 bi đỏ, suy ra có C 5 3 = 10 cách.
Suy ra xác suất cần tính là P = 40 + 10 C 9 3 = 25 42
Gọi A là biến cố lấy ra được 3 viên bi màu đỏ.
Số cách lấy 3 viên bi từ 20 viên bi là C 20 3 nên ta có Ω = C 20 3 = 1140 .
Số cách lấy 3 viên bi màu đỏ là C 8 3 = 56 nên Ω A = 56 .
Do đó: P ( A ) = 56 1140 = 14 285
Đáp án B
Chọn D
Cách 1:
Số phần tử của không gian mẫu: .
Gọi A là biến cố: “lấy ra 4 viên bi có đủ ba màu”
Ta xét các khả năng của biến cố A:
TH1: Lấy được 1 bi trắng, 1 bi xanh và 2 bi vàng, trường hợp này có (cách).
TH2: Lấy được 1 bi trắng, 2 bi xanh và 1 bi vàng, trường hợp này có (cách).
TH3: Lấy được 2 bi trắng, 1 bi xanh và 1 bi vàng, trường hợp này có (cách).
Số cách lấy 4 viên bi có đủ cả ba màu là:
Xác suất cần tìm là
Cách 2:
Số phần tử của không gian mẫu:
Gọi A là biến cố: “lấy ra 4 viên bi không có đủ ba màu” .
Ta có:
Xác suất của biến cố A là:
Vậy xác suất cần tìm là: .
\(\Omega\) lấy 3 viên bi
\(\left|\Omega\right|=C^3_{12}\)
gọi A" 3 viên lấy ra màu đỏ"
\(\left|A\right|=C^3_7\)
Suy ra
\(P\left(A\right)=\frac{C^3_7}{C^3_{12}}\)
\(n\left(\Omega\right)=C^3_9\)
\(n\left(A\right)=C^2_5\cdot C^1_4\)
=>P(A)=10/21