Cho đường tròn tâm O đường kính AB. Gọi Ax, By là các tia vuông góc với AB về cùng một phía. Gọi M là điểm bất kì thuộc tia Ax. Qua M kẻ tiếp tuyến với đường tròn (O, tiếp tuyến này cắt By tại N, AI cắt OM tại H, BI cắt ON tại K a,Tứ giác OHIK là hình gì?Vì sao? b, chứng minh rằng: OH.OM=OK.ON.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I là tiếp điểm của tiếp tuyến MN với đường tròn (O). Nối OI
Ta có: (hai góc kề bù)
OM là tia phân giác của góc AOI (tính chất hai tiếp tuyến cắt nhau)
ON là tia phân giác của góc BOI (tính chất hai tiếp tuyến cắt nhau)
Suy ra : OM ⊥ ON (tính chất hai góc kề bù)
Vậy
Ta có: MA = MI (tính chất hai tiếp tuyến cắt nhau)
NB = NI (tính chất hai tiếp tuyến cắt nhau)
Mà: MN = MI + IN
Suy ra: MN = AM + BN
bạn tự vẽ hình giúp mik nha
a) áp dụng t/c 2 tiếp tuyến cắt nhau ta có
OM là tia phân giác \(\widehat{AOI}\)
ON là tpg \(\widehat{IOB}\)
mà:\(\widehat{AOI}+\widehat{BOI}=180^o\)\(\Rightarrow OM\perp ON\)(t/c 2 góc kề bù)
vậy \(\widehat{MON}=90^o\)
b)từ t/c 2 tiếp tuyến cắt nhau ta có
MA=MI;BN=NI
\(\Rightarrow\)AM+BN=MI+NI=MN9(đpcm)
c)ta có:AM.BN=MI.NI(1)
xét \(\Delta MON\) vuông tại O có
MI.NI(đlý)=\(OI^2=R^2\)(2)
từ (1) và (2)\(\Rightarrow AM.BN=R^2\)
Tam giác OMN vuông tại O có OI ⊥ MN (tính chất tiếp tuyến)
Theo hệ thức lượng trong tam giác vuông, ta có:
O I 2 = MI.NI
Mà: MI = MA, NI = NB (chứng minh trên)
Suy ra : AM.BN = O I 2 = R 2
b: Xét (O) có
MC là tiếp tuyến
MA là tiếp tuyến
Do đó: MC=MA
Xét (O) có
NC là tiếp tuyến
NB là tiếp tuyến
Do đó: NC=NB
Ta có: MN=MC+NC
nên MN=MA+NB
a: Xét (O) có
ME là tiếp tuyến
MA là tiếp tuyến
Do đó: ME=MA và OM là tia phân giác của góc AOE(1)
Xét (O) có
NE là tiếp tuyến
NB là tiếp tuyến
Do đó: NE=NB và ON là tia phân giác của góc BOE(2)
Từ (1) và (2) suy ra \(\widehat{MON}=\dfrac{1}{2}\cdot\left(\widehat{EOA}+\widehat{EOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
b: Ta có: MN=ME+NE
nên MN=MA+NB
c: Xét ΔOMN vuông tại O có OE là đường cao
nên \(OE^2=EM\cdot EN\)
hay \(AM\cdot BN=R^2\)
a: Xét (O) có
MA,MI là tiếp tuyến
nên MA=MI và OM là phân giác của góc AOI(1)
mà OA=OI
nên OM là trung trực của AI
=>OM vuông góc với AI tại H
Xét (O) có
NI,NB là tiếp tuyến
nên NI=NB và ON là phân giác của góc IOB(2)
mà OI=OB
nên ON là trung trực của IB
=>ON vuông góc IB tại K
Từ (1), (2) suy ra gócc MON=1/2*180=90 độ
Xét tứ giác OHIK có
góc OHI=góc OKI=góc HOK=90 độ
nên OHIK là hình chữ nhật
b: OH*OM=OI^2
OK*ON=OI^2
=>OH*OM=OK*ON