Câu 16. (TH) (1,0 điểm) Tìm $x$, biết:
a) $25 + x = 11$.
b) $3x = 3^5$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\Leftrightarrow\left(x-5\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\)
CÂU 10:
a, -x - 84 + 214 = -16 b, 2x -15 = 40 - ( 3x +10 )
x = - ( -16 -214 + 84 ) 2x + 3x = 40 -10 +15
x = 16 + 214 - 84 5x = 45
x = 146 x = 9
c, \(|-x-2|-5=3\) d, ( x - 2)(2x + 1) = 0
\(|-x-2|=8\) => x - 2 = 0 hoặc 2x + 1 = 0
=> - x - 2 = 8 hoặc x + 2 = 8 \(\orbr{\begin{cases}x-2=0\\2x+1=0\end{cases}=>}\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}\)
\(\orbr{\begin{cases}-x-2=8\\x+2=8\end{cases}=>\orbr{\begin{cases}x=-10\\x=6\end{cases}}}\)
Câu 17:
Xét ΔADC có OE//DC
nên \(\dfrac{OE}{DC}=\dfrac{AO}{AC}\left(1\right)\)
Xét ΔBDC có OH//DC
nên \(\dfrac{OH}{DC}=\dfrac{BO}{BD}\left(2\right)\)
Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)
Do đó: ΔOAB đồng dạng với ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)
=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)
=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)
=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)
=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)
=>\(\dfrac{OA}{AC}=\dfrac{OB}{BD}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{OE}{DC}=\dfrac{OH}{DC}\)
=>OE=OH
Câu 15:
a: \(3x\left(x-1\right)+x-1=0\)
=>\(3x\left(x-1\right)+\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(3x+1\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b: \(x^2-6x=0\)
=>\(x\cdot x-x\cdot6=0\)
=>x(x-6)=0
=>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Câu 14:
a. $6.2^2-36:3^2=6.4-36:9=24-4=20$
b. $19.48+52.19-400=19(48+52)-400=19.100-400=1900-400=1500$
a, 3\(x\).(\(x\) - 1) + \(x\) - 1 = 0
(\(x\) - 1).(3\(x\) + 1) = 0
\(\left[{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b, \(x^2\) - 6\(x\) = 0
\(x\).(\(x\) - 6) = 0
\(\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Câu 2:
\(a,ĐK:x\ge-3\\ PT\Leftrightarrow6\sqrt{x+2}-3\sqrt{x+2}-\sqrt{x+3}=2\\ \Leftrightarrow2\sqrt{x+2}=2\\ \Leftrightarrow\sqrt{x+2}=1\\ \Leftrightarrow x+2=1\\ \Leftrightarrow x=-1\left(tm\right)\\ b,\Leftrightarrow\sqrt{\left(2x-3\right)^2}=2017\Leftrightarrow\left|2x-3\right|=2017\\ \Leftrightarrow\left[{}\begin{matrix}2x-3=2017\\3-2x=2017\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1010\\x=-1007\end{matrix}\right.\)
Câu 3:
\(a,P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{-3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ P=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{-3}{\sqrt{x}+3}\\ b,P=\dfrac{-3}{\sqrt{x}+3}< 0,\forall x\left(-3< 0;\sqrt{x}+3>0\right)\\ \Leftrightarrow x\in\varnothing\)
a. (x2 - 4).(x+3/5) = 0
TH1: x2 - 4 = 0
x2 = 4
x2 = 22
-22
=> x = 2
-2
Vậy x \(\in\){-2;2}
a) \(25+x=11\)
\(x=11-25\)
\(x=-14\)
b) \(3x=3^5\Rightarrow x=3^5:3\Rightarrow x=3^4=81\)
a) 25+x=1125+x=11
x=11-25x=11−25
x=-14x=−14
b) 3x=3^5\Rightarrow x=3^5:3\Rightarrow x=3^4=813x=35⇒x=35:3⇒x=34=81