K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABD có AM/AB=AQ/AD

nên MQ//BD và MQ=BD/2

Xét ΔCBDcó CN/CB=CP/CD

nên NP//BD và NP=BD/2

=>MQ//PN và MQ=PN

=>MNPQ là hình bình hành

22 tháng 12 2018

Tứ giác có thể là hình vuông, chữ nhật phải không bạn?

P/s: Hỏi thôi chớ không trả lời đâu :D

21 tháng 12 2018

giúp mình với sắp thi rồi

16 tháng 11 2021

Xét ΔADB có 

M là trung điểm của AB

P là trung điểm của AD

Do đó: MP là đường trung bình của ΔADB

Suy ra: MP//BD và MP=BD/2(1)

Xét ΔBCD có 

N là trung điểm của BC

Q là trung điểm của CD

Do đó: NQ là đường trung bình của ΔBCD

Suy ra: NQ//BD và NQ=BD/2(2)

Từ (1) và (2) suy ra MP//NQ và MP=NQ

hay MPQN là hình bình hành

29 tháng 10 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Trong  △ ABD ta có:

M là trung điểm của AB

Q là trung điểm của AD nên MQ là đường trung bình của  △ ABD.

⇒ MQ // BD và MQ = 1/2 BD (tính chất đường trung bình của tam giác) (1)

Trong  △ CBD ta có:

N là trung điểm của BC

P là trung điểm của CD

nên NP là đường trung bình của  △ CBD

⇒ NP // BD và NP = 1/2 BD (tính chất đường trung bình của tam giác) (2)

Từ (1) và (2) suy ra: MQ // NP và MQ = NP nên tứ giác MNPQ là hình bình hành

AC ⊥ BD (gt)

MQ // BD

Suy ra: AC ⊥ MQ

Trong △ ABC có MN là đường trung bình ⇒ MN // AC

Suy ra: MN ⊥ MQ hay (NMQ) = 90 0

Vậy tứ giác MNPQ là hình chữ nhật.

2 tháng 11 2021

Xét \(\Delta ABC\), có:

\(\left\{{}\begin{matrix}AM=MB\\AQ=QD\end{matrix}\right.\Rightarrow MQ\) là đường TB của \(\Delta ABC\)

\(\Rightarrow MQ\text{/}\text{/}=\dfrac{1}{2}BD\left(1\right)\)

Xét \(\Delta CBD\), có:

\(\left\{{}\begin{matrix}BN=NC\\CP=PD\end{matrix}\right.\Rightarrow NP\) là đường TB của \(\Delta CBD\)

\(\Rightarrow NP\text{/}\text{/}=\dfrac{1}{2}BD\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow NP\text{/}\text{/}MQ\)

Vậy...............

20 tháng 12 2020

ai giup mik voi 

 

 

 

a: Xét ΔBAD có

M,Q lần lượt là tđiểm của AB và AD

nên MQ là đường trung bình

=>MQ//BD và MQ=BD/2(1)

Xét ΔBCD có

N,P lần lượt là trung điểm của CB và CD

nên NP là đường trung bình

=>NP//BD và NP=BD/2(2)

Từ (1) và (2) suy a MQ//NP và MQ=NP

=>MNPQ là hình bình hành

b: Xét ΔABC có

M,N lần lượt là trung điểm của BA và BC

nên MN là đường trung bình

=>MN=AC/2 và MN//AC

Để MNPQ là hình chữ nhật thì MN vuông góc với MQ

=>AC vuông góc với BD