K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2016

Để A dương 

<=>2x-1>0

<=>2x>1

<=>x>1/2

b,Để B âm 

<=>8-2x<0

<=>2x>8

<=>x>4

c,Để C không âm

<=>\(2\left(x+3\right)\ge0\)

<=>\(x+3\ge0\)

<=>\(x\ge-3\)

d,Để D không dương

<=>\(7\left(2-x\right)\le0\)

<=>\(2-x\le0\)

<=>\(x\ge2\)

Ai thấy mình làm đúng thì tích nha.Ai tích mình mình tích lại.

7 tháng 7 2015

Tử = x4 + (x2 + x + 1)

x4 \(\ge\) 0 với mọi x ; x2 + x + 1 = x2 + 2.x.\(\frac{1}{2}\)\(\frac{1}{4}\) + \(\frac{3}{4}\) = (x + \(\frac{1}{2}\) )2 + \(\frac{3}{4}\) > 0 

=> Tử > 0 với mọi x

+) Mẫu = (x4 - x3 + x2) + (x2 - x + 1) = x2.(x2 - x + 1) +  (x2 - x + 1)  = (x2 + 1). (x2 - x + 1) > 0 với mọi x 

Do x2 + 1 > 0 ;  x2 - x + 1 = (x - \(\frac{1}{2}\) )2 + \(\frac{3}{4}\) > 0 

Vậy A > 0 với mọi x

B=x^4+2x^3-3x^2+2x-x^4-2x^3+3x^2-3x+x-12

=-12

25 tháng 6 2023

\(B=x\left(x^3+2x^2-3x+2\right)-\left(x^2+2x\right)x^2+3x\left(x-1\right)+x-12\)

\(=x^4+2x^3-3x^2+2x-x^4-2x^3+3x^2-3x+x-12\)

\(=\left(x^4-x^4\right)+\left(2x^3-2x^3\right)+\left(-3x^2+3x^2\right)+\left(2x-3x+x\right)-12\)

\(=0+0+0+0-12\)

\(=-12\)

`@` `\text {Ans}`

`\downarrow`

`a,`

\(125- (x + 1) ^ 2 + x ^ 2 - (- 2x + 3)\)

`= 125 - x^2 -2x - 1 + x^2 + 2x - 3`

`= (125 - 1 - 3) + (-x^2 + x^2) + (-2x+2x)`

`= 121`

Vậy, giá trị của biểu thức trên không phụ thuộc vào giá trị của biến.

`b,`

\(150-(x-y)(x+y)+x^2-y^2\)

`= 150 - [ x(x+y) - y(x+y)] + x^2 - y^2`

`= 150 - (x^2 + xy - xy - y^2) + x^2 - y^2`

`= 150 - (x^2 - y^2) + x^2 - y^2`

`= 150 - x^2 + y^2 + x^2 - y^2`

`= 150`

Vậy, giá trị của biểu thức trên không phụ thuộc vào giá trị của biến.

30 tháng 6 2023

\(a,125-\left(x+1\right)^2+x^2-\left(-2x+3\right)\\ =125-x^2-2x-1+x^2+2x-3\)

\(=\left(-x^2+x^2\right)+\left(-2x+2x\right)+\left(125-1-3\right)\\ =121\)

\(b,150-\left(x-y\right)\left(x+y\right)+x^2-y^2\\ =150-\left(x^2-y^2\right)+x^2-y^2\\ =150-x^2+y^2+x^2-y^2\\ =150+\left(-x^2+x^2\right)+\left(-y^2+y^2\right)\\ =150\)

15 tháng 8 2018

Đặt \(A=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)

\(=4\left(x+y\right)\left(x+z\right)x\left(x+y+z\right)+y^2z^2=4\left(x^2+xz+xy+yz\right)\left(x^2+xy+xz\right)+y^2z^2\)

Đặt x2+xy+xz=t, ta có:

\(A=4\left(t+yz\right)t+y^2z^2=4t^2+4tyz+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+yz\right)^2\ge0\)

15 tháng 8 2018

ta có : \(4x\left(x+y\right)\left(x+y+z\right)\left(x+y\right)y^2x^2=4x\left(x+y+z\right)\left(x+y\right)^2y^2x^2\)

không thể khẳng định đc \(\Rightarrow\) bn xem lại đề .

1 tháng 12 2017

a ) \(P=\dfrac{x^4-x^3-x+1}{x^4+x^3+3x^2+2x+2}\)

\(P=\dfrac{x^3\left(x-1\right)-\left(x-1\right)}{x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)}\)

\(P=\dfrac{\left(x^3-1\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x^2+2\right)}=\dfrac{\left(x-1\right)^2}{\left(x^2+2\right)}\)

Với : x # 1 thì : ( x - 1)2 luôn lớn hơn hoặc bằng 0

x2 + 2 > 0 với mọi x

Suy ra : \(P=\dfrac{\left(x-1\right)^2}{\left(x^2+2\right)}>0\)( với x # 1)

b) Tương tự

1 tháng 12 2017

thanks bạn

17 tháng 4 2016

(2x+3)(4x^2-6x+9)-2(4x^3-1)

=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2

=29