Một chiếc hộp được thả trượt không vận tốc đầu từ trên đỉnh mặt phẳng nghiêng dài 5m, mặt phẳng nghiêng 300 so với phương ngang . Hệ số ma sát giữa sàn và thùng 0,2.Lấy g = 10m/s2. Hỏi sau bao lâu vật trượt đến chân mặt phẳng nghiên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Chọn hệ quy chiếu Oxy như hình vẽ, chiều dương là chiều chuyển động. Vật chịu tác dụng của các lực f m s → ; N → ; P →
Theo định luật II newton ta có: f → m s + N → + P → = m a → 1
Chiếu Ox ta có :
P x − f m s = m a 1 ⇒ P sin α − μ N = m a 1
Chiếu Oy ta có: N = P y = P cos α
⇒ a 1 = g sin α − μ g cos α
⇒ a 1 = 10. 1 2 − 0 , 1.10. 3 2 = 4 , 134 m / s 2
Vận tốc của vật ở chân dốc.
Áp dụng công thức v 1 2 − v 0 2 = 2 a 1 s
⇒ v 1 = 2 a 1 s = 2.4 , 134.40 ≈ 18 , 6 m / s
b. Chọn hệ quy chiếu Oxy như hình vẽ , chiều dương (+) Ox là chiều chuyển động .Áp dụng định luật II Newton
Ta có F → m s + N → + P → = m a → 2
Chiếu lên trục Ox: − F m s = m a 2 ⇒ − μ . N = m a 2 1
Chiếu lên trục Oy: N – P = 0 ⇒ N = P=mg
⇒ a 2 = − μ g = − 0 , 2.10 = − 2 m / s 2
Để vật dừng lại thì v 2 = 0 m / s
Áp dụng công thức:
v 2 2 − v 1 2 = 2 a 2 . s 2 ⇒ s 2 = − 18 , 6 2 2. − 2 = 86 , 5 m
- Khi vật trượt trên mặt phẳng nghiêng, có 3 lực tác dụng lên vật:
+ Trọng lực: P →
+ Phản lực của mặt phẳng nghiêng: N → (có phương vuông góc với mp nghiêng) (trong hình kí hiệu là Q → )
+ Lực ma sát trượt: F → m s t
- Theo định luật II Niutơn:
P → + N → + F → m s t = m a →
Mà: P → = P → 1 + P → 2
Nên: P → 1 + P → 2 + F → m s t + N → = m a →
Mặt khác: P → 2 + N → = 0 →
- Chọn chiều dương là chiều chuyển động của vật:
− F m s t + P 1 = m a ⇒ − μ t N + P sin α = m a
Với: N = P 2 = P c o s α = m g c o s α
Với: sin α = B C A C = 5 10 = 1 2 c o s α = A B A C = A C 2 − B C 2 A C = 10 2 − 5 2 10 = 3 2
a = g ( sin α − μ t c o s α ) = 9 , 8 ( 0 , 5 − 0 , 1. 3 2 ) = 4 , 05 m / s 2
Đáp án: C
\(\left\{{}\begin{matrix}Ox:mg\sin\alpha-F_{ms}=m.a\\Oy:N=mg\cos\alpha\end{matrix}\right.\Rightarrow mg\sin\alpha-\mu mg\cos\alpha=ma\)
\(\Rightarrow a=g\sin\alpha-\mu g\cos\alpha=...\left(m/s^2\right)\)
200g=0,2kg
các lực tác dụng lên vật khi ở trên mặt phẳng nghiêng
\(\overrightarrow{P}+\overrightarrow{N}=m.\overrightarrow{a}\)
chiếu lên trục Ox có phương song song với mặt phẳng nghiêng, chiều dương cùng chiều chuyển động
P.sin\(\alpha\)=m.a\(\Rightarrow\)a=5m/s2
vận tốc vật khi xuống tới chân dốc
v2-v02=2as\(\Rightarrow\)v=\(4\sqrt{5}\)m/s
khi xuống chân dốc trượt trên mặt phẳng ngang xuất hiện ma sát
các lực tác dụng lên vật lúc này
\(\overrightarrow{P}+\overrightarrow{N}+\overrightarrow{F_{ms}}=m.\overrightarrow{a'}\)
chiếu lên trục Ox có phương nằm ngang chiều dương cùng chiều chuyển động của vật
-Fms=m.a'\(\Rightarrow-\mu.N=m.a'\) (1)
chiếu lên trục Oy có phương thẳng đứng chiều dương hướng lên trên
N=P=m.g (2)
từ (1),(2)\(\Rightarrow\)a'=-2m/s2
thời gian vật chuyển động trên mặt phẳng đến khi dừng lại là (v1=0)
t=\(\dfrac{v_1-v}{a'}\)=\(2\sqrt{5}s\)
Chọn đáp án B
Chọn hệ quy chiếu Oxy như hình vẽ, chiều dương là chiều chuyển động. Vật chịu tác dụng của các lực
Theo định luật II newton ta có:
Chiếu Ox ta có
Chiếu Oy ta có:
Vận tốc của vật ở chân dốc. Áp dụng công thức
m/s
Chọn đáp án A
Chọn hệ quy chiếu Oxy như hình vẽ, chiều dương là chiều chuyển động. Vật chịu tác dụng của các lực
Theo định luật II newton ta có:
Chiếu Ox ta có :
Vận tốc của vật ở chân dốc.Áp dụng công thức
Khi chuyển động trên mặt phẳng ngang
Chọn hệ quy chiếu Oxy như hình vẽ , chiều dương (+) Ox là chiều chuyển động .Áp dụng định luật II Newton
Ta có
Chiếu lên trục Ox
Để vật dừng lại thì
Chiếu lên trục Oy
Chọn hệ quy chiếu Oxy như hình vẽ, chiều dương là chiều chuyển động.
Vật chịu tác dụng của các lực N → ; P →
Theo định luật II newton ta có: N → + P → = m a → 1
Chiếu Ox ta có : P x = m a 1 ⇒ P sin α = m a 1
⇒ a 1 = g sin α = 10. 5 10 = 5 m / s 2
Vận tốc của vật ở chân dốc.
Áp dụng công thức v 1 2 − v 0 2 = 2 a 1 s
⇒ v 1 = 2 a 1 s = 2.5.10 = 10 m / s
Khi chuyển động trên mặt phẳng ngang: Chọn hệ quy chiếu Oxy như hình vẽ , chiều dương (+) Ox là chiều chuyển động .Áp dụng định luật II Newton
Ta có F → m s + N → + P → = m a → 2
Chiếu lên trục Ox: − F m s = m a 2 ⇒ − μ . N = m a 2 1
Chiếu lên trục Oy: N – P = 0 ⇒ N = P=mg
⇒ a 2 = − μ g = − 0 , 1.10 = − 1 m / s 2
Để vật dừng lại thì v 2 = 0 m / s
Áp dụng công thức:
v 2 2 − v 1 2 = 2 a 2 . s 2 ⇒ s 2 = − 10 2 2. − 1 = 50 m
Và v 2 = v 1 + a 2 t ⇒ t = − 10 − 1 = 10 s
Chọn hệ trục tọa độ \(Oxy\) gồm:
- \(Oy\) vuông góc với mặt phẳng nghiêng
- \(Ox\) song song với mặt phẳng nghiêng
- Lấy gốc thời gian lúc vật bắt đầu trượt xuống mặt phẳng nghiêng
Các lực tác dụng lên vật khi nó trượt xuống mặt phẳng nghiêng:
+ Trọng lực \(\overrightarrow{P}\), phản lực \(\overrightarrow{Q}\), lực ma sát \(\overrightarrow{F_{ms}}\)
Áp dụng định luật II Newton cho vật: \(\overrightarrow{a}=\dfrac{\overrightarrow{P}+\overrightarrow{Q}+\overrightarrow{F_{ms}}}{m}\) \(\left(1\right)\)
Chiếu (1) lên \(Ox\): \(a=\dfrac{P.\sin30-F_{ms}}{m}\) \(\left(2\right)\)
Mà \(F_{ms}=\mu.N=\mu.Q\)
Chiếu (1) lên \(Oy\): \(O=\dfrac{-P.\cos30+Q}{m}\)
\(\Rightarrow Q=P.\cos30\)
\(\Rightarrow F_{ms}=\mu.P.\cos30\)
Thay vào (2): \(a=\dfrac{P.\sin30-\mu.P.\cos30}{m}\) \(=\dfrac{m.g\left(\sin30-\mu.\cos30\right)}{m}\)
\(\Rightarrow a=g\left(\sin30-\mu.\cos30\right)\) \(=10\left(\dfrac{1}{2}-0,2.\dfrac{\sqrt{3}}{2}\right)=3,268\) (m/s2)
Ta có: \(S=\dfrac{1}{2}at^2\Rightarrow t=\sqrt{\dfrac{2S}{a}}\left(3\right)\)
Áp dụng hệ thức lượng ta có:
\(\sin30=\dfrac{h}{l}\Rightarrow h=\sin30.l\) \(=sin30.5=2,5\left(m\right)\)
Thay vào (3) ta có: \(t=\sqrt{\dfrac{2S}{a}}=\sqrt{\dfrac{2.2,5}{3,286}}\approx1,233\left(s\right)\)
Vậy vận tốc ở chân mặt phẳng nghiêng là 1,233 giây