Chứng tỏ rằng biểu thức sau chia hết cho 10:
a)A=(11^200)-1 b)B=(12^300)-(2^300)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B= 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - 11 - 12 +...+ 298 - 299 - 300 + 301 + 302
= 1 + ( 2 - 3 - 4 + 5) + ( 6 - 7 - 8 + 9) + ( 10 - 11 - 12 + 13) +...+ (298 - 299 - 300 + 301 ) + 302
= 1 + 0 + 0 +...+ 0 + 302
= 1 + 302 = 303 chia hết cho 3
=> B chia hết cho 3
Bài 2:
b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)
hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)
Bài 1:
a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)
\(=75\cdot\left(-4\right)+603\)
\(=603-300=303\)
Bài 2:
a) Vì tổng của hai số là 601 nên trong đó sẽ có 1 số chẵn, 1 số lẻ
mà số nguyên tố chẵn duy nhất là 2
nên số lẻ còn lại là 599(thỏa ĐK)
Vậy: Hai số nguyên tố cần tìm là 2 và 599
b,Gọi ƯCLN(21n+4,14n+3)=d
21n+4⋮d ⇒42n+8⋮d
14n+3⋮d ⇒42n+9⋮d
(42n+9)-(42n+8)⋮d
1⋮d ⇒ƯCLN(21n+4,14n+3)=1
Vậy phân số 21n+4/14n+3 là phân số tối giản
a. ta có \(11\equiv1mod10\Rightarrow11^{200}\equiv1mod10\)
nên \(11^{200}-1\equiv0mod10\). Vậy \(11^{200}-1\) chia hết cho 10.
b. ta có \(12\equiv2mod10\Rightarrow12^{200}\equiv2^{200}mod10\)
nên \(12^{200}-2^{200}\equiv0mod10\). Vậy \(12^{200}-2^{200}\) chia hết cho 10.