K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2016

A B C d h H a

Gọi h là đường cao của tam giác ABC thì h là hằng số không đổi và cạnh đấy BC = a cố định.

Ta có \(S_{ABC}=\frac{1}{2}.BC.AH=\frac{1}{2}ah\) không đổi.

Vậy có đpcm

1 tháng 5 2017

Gọi h (AH) là đường cao của \(\Delta ABC\) thì h là hằng số không đổi và cạnh đáy BC bằng a cố định .

Ta có : \(S_{ABC}=\dfrac{1}{2}BC.AH=\dfrac{1}{2}a.h\) không đổi .

Vậy diện tích tam giác ABC luôn không đồi nếu có đáy BC cố định và đỉnh A di động trên 1 đường thẳng d cố định song song với đường thẳng BC .

28 tháng 3 2018

Đường thẳng d cố định song song với đường thẳng BC cố định nên khoảng cách hai đường thẳng d và BC là không đổi.

Tam giác ABC có cạnh đáy BC không đổi, chiều cao AH là khoảng cách giữa 2 đường thẳng song song không đổi.

Vậy điểm A thay đổi trên đường thẳng d // AB thì diện tích tam giác ABC không đổi.

d) Gọi I là trung điểm BC,AI cắt EF tại K.H là hình chiếu vuông góc của K  trên BC. Chứng minh: AH luôn đi qua một điểm cố định