K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

f(2)= 26+10=74(Áp dụng định lí bơ du)

Vậy số dư x6+10 cho x-2  là 74

8 tháng 3 2017

mình cũng làm vậy rồi nhưng ko đúng

12 tháng 7 2019

\(f\left(x\right)\) chia \(x-2\) dư \(11\Leftrightarrow f\left(x\right)=\left(x-2\right)H\left(x\right)+11\Leftrightarrow f\left(x\right)-11=\left(x-2\right)H\left(x\right)\)

\(f\left(x\right)\) chia \(x-3\) dư \(23\Leftrightarrow f\left(x\right)=\left(x-3\right)G\left(x\right)+23\Leftrightarrow f\left(x\right)-23=\left(x-3\right)G\left(x\right)\)

Do vậy \(\left(f\left(x\right)-11\right)\left(f\left(x\right)-23\right)=\left(x-2\right)\left(x-3\right)H\left(x\right)G\left(x\right)\)

\(\Rightarrow f\left(x\right)^2-34f\left(x\right)+253⋮\left(x-2\right)\left(x-3\right)\)

Do vậy \(f\left(x\right)\) chia \(\left(x-2\right)\left(x-3\right)\) dư \(-253\)

5 tháng 3 2016

Ta có : x : 3 dư 1

           x : 4 dư2

           x :5 dư 3

           x : 6 dư 4

=> x +2 chia hết cho 3,4,5,6

=>Bội chung bé nhất của (3,4,5,6)=60

=>Các bội chung khác của x+2 là {0,60,120,180,240,...}

=>x thuộc {-2,58,118,178,138,....}

Mà x là số tự nhiên bé nhất nên x =58

           

9 tháng 3 2016

sai rồi bạn ơi

11 tháng 6 2019

Gọi số cần tìm là a thì a+3 chia hết cho 7 a+3 chia hết cho 9 nên a+3 chia hết cho 63 suy ra a chia cho 63 dư 60

31 tháng 10 2018

Số dư là 74 nhé bạn

20 tháng 9 2017

Từ giả thiết ta có thể viết \(f\left(x\right)=g\left(x\right)\left(x+1\right)+5\)    (1) 

Và \(f\left(x\right)=h\left(x\right)\left(x-2\right)+7\)   (2) 

Do (x + 1)(x - 2) là đa thức bậc 2 nên số dư là đa thức bậc 1. Tức là:

\(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+ax+b\)    (Với g(x) , h(x), t(x) là các đa thức)

Ta có \(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+a\left(x+1\right)+b-a=\left(x+1\right)\left[\left(x-2\right)t\left(x\right)+a\right]+b-a\)

Theo (1) thì b - a = 5.

Ta cũng có :

\(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+a\left(x-2\right)+b+2a=\left(x-2\right)\left[\left(x+1\right)t\left(x\right)+a\right]+b+2a\)

Theo (2) thì b + 2a = 7.

Từ đó ta tìm được \(a=\frac{2}{3};b=\frac{17}{3}\)