x^6+10 chia cho x-2 dư bao nhiêu ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)\) chia \(x-2\) dư \(11\Leftrightarrow f\left(x\right)=\left(x-2\right)H\left(x\right)+11\Leftrightarrow f\left(x\right)-11=\left(x-2\right)H\left(x\right)\)
\(f\left(x\right)\) chia \(x-3\) dư \(23\Leftrightarrow f\left(x\right)=\left(x-3\right)G\left(x\right)+23\Leftrightarrow f\left(x\right)-23=\left(x-3\right)G\left(x\right)\)
Do vậy \(\left(f\left(x\right)-11\right)\left(f\left(x\right)-23\right)=\left(x-2\right)\left(x-3\right)H\left(x\right)G\left(x\right)\)
\(\Rightarrow f\left(x\right)^2-34f\left(x\right)+253⋮\left(x-2\right)\left(x-3\right)\)
Do vậy \(f\left(x\right)\) chia \(\left(x-2\right)\left(x-3\right)\) dư \(-253\)
Ta có : x : 3 dư 1
x : 4 dư2
x :5 dư 3
x : 6 dư 4
=> x +2 chia hết cho 3,4,5,6
=>Bội chung bé nhất của (3,4,5,6)=60
=>Các bội chung khác của x+2 là {0,60,120,180,240,...}
=>x thuộc {-2,58,118,178,138,....}
Mà x là số tự nhiên bé nhất nên x =58
Gọi số cần tìm là a thì a+3 chia hết cho 7 và a+3 chia hết cho 9 nên a+3 chia hết cho 63 suy ra a chia cho 63 dư 60
Từ giả thiết ta có thể viết \(f\left(x\right)=g\left(x\right)\left(x+1\right)+5\) (1)
Và \(f\left(x\right)=h\left(x\right)\left(x-2\right)+7\) (2)
Do (x + 1)(x - 2) là đa thức bậc 2 nên số dư là đa thức bậc 1. Tức là:
\(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+ax+b\) (Với g(x) , h(x), t(x) là các đa thức)
Ta có \(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+a\left(x+1\right)+b-a=\left(x+1\right)\left[\left(x-2\right)t\left(x\right)+a\right]+b-a\)
Theo (1) thì b - a = 5.
Ta cũng có :
\(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+a\left(x-2\right)+b+2a=\left(x-2\right)\left[\left(x+1\right)t\left(x\right)+a\right]+b+2a\)
Theo (2) thì b + 2a = 7.
Từ đó ta tìm được \(a=\frac{2}{3};b=\frac{17}{3}\)
f(2)= 26+10=74(Áp dụng định lí bơ du)
Vậy số dư x6+10 cho x-2 là 74
mình cũng làm vậy rồi nhưng ko đúng