K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2017

 Nếu x,y thuộc Z thì giải như sau 
2*(2xy + x + y) = 2*83 
=> 4xy + 2x + 2y = 166 
=> 2x(2y + 1) + 2y +1 = 167 (cộng 2 vế với 1) 
=> (2x + 1)(2y + 1) = 167 
=> (2x + 1), (2y + 1) thuộc Ư(167) (vì x, y thuộc Z) 
=> (2x + 1), (2y + 1) thuộc (1, -1, 167, -167) 
=> kẻ bảng 
2x + 1 1 -1 167 -167 
2y + 1 167 -167 1 -1 
X 0 -1 83 -84 
Y 83 -84 0 -1 
Đáp số: 
x=0,y=83 
x=-1,y=-84 
x=83,y=0 
x=-84,y=-1 

DD
19 tháng 7 2021

a) \(2xy-y^2-6x+4y=7\)

\(\Leftrightarrow2xy-6x-y^2+3y+y-3=4\)

\(\Leftrightarrow\left(2x-y+1\right)\left(y-3\right)=4\)

Tới đây bạn xét bảng giá trị thu được nghiệm \(\left(x,y\right)\).

b) \(x^2+y^2-x⋮xy\Rightarrow x^2+y^2-x⋮x\Rightarrow y^2⋮x\).

Đặt \(y^2=kx,\left(k\inℤ\right),d=\left(x,k\right)\).

\(x^2+\left(kx\right)^2-x⋮xy\Rightarrow x+k^2x-1⋮y\).

suy ra \(x+k^2x-1⋮d\Rightarrow1⋮d\Rightarrow d=1\).

Do đó \(kx=y^2\)mà \(\left(k,x\right)=1\)nên \(x\)là số chính phương. 

2xy=3(x+y)+1

2xy=3x+3y+1

=>2xy-3x-3y=1=>2xy-3y=3x+1=>(2x-3)y=3x+1. Vì x nguyên nên 2x-3 khác 0.

=>y=(3x+1)/(2x-3). 

Để y nguyên thì 2y cũng nguyên=>2y=(6x+2)/(2x-3)=>(6x-9+11)/(2x-3)=3+11/(2x-3).

Để 2y nguyên thì 2x-3 là ước của 11.

Nếu 2x-3=11 thì x=7, y=2.(chọn)

Nếu 2x-3=1 thì x=2, y=7.(chọn)

Nếu 2x-3=-1 thì x=1, y=-5(loại vì y nguyên dương)

Nếu 2x-3=-11 thì x=-4, y=1(loại vì x nguyên dương)

Vậy (x,y)=(2,7) và (7,2).

16 tháng 10 2017

Ta có: 2xy+x+y=83\(\Rightarrow\)4xy+2x+2y=166\(\Rightarrow\)(2x+1) (2y+1)=167\(\Rightarrow\)x,y \(\in\)(0;83), (83;0)

Vì x,y  nguyên dương nên ko tồn tại x,y

16 tháng 10 2017

ta có:\(x+2xy+y=83\)

\(\Leftrightarrow x\left(1+2y\right)+\frac{1}{2}\left(1+2y\right)=\frac{167}{2}\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left(1+2y\right)=\frac{167}{2}\)

\(\Leftrightarrow\left(2x+1\right)\left(2y+1\right)=167=1.167=167.1\) (vì x,y>0)

với: \(\hept{\begin{cases}2x+1=1\\2y+1=167\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=83\end{cases}}}\)

với \(\hept{\begin{cases}2x+1=167\\2y+1=1\end{cases}\Rightarrow\hept{\begin{cases}x=83\\y=0\end{cases}}}\)

Vậy (x;y)={ (0;83) ; (83;0)}

27 tháng 5 2017

\(\Leftrightarrow3x^2+x\left(2y^2-y-3\right)-\left(2y^2-y-3\right)=0\)

đặt \(\left(2y^2-y-3\right)=m\)với m là số tự nhiên nên phương trình trở thành

\(\Leftrightarrow3x^2+mx-m=0\)

có \(\Delta=m^2+12m=\left(m+6\right)^2-36=k^2\)vì x,y nguyên nên \(\Delta\)là số chính phương

\(\Leftrightarrow\left(m+6-k\right)\left(m+6+k\right)=36\)

m+6-k và m+6+k là ước của 36 ta xét các trường hợp có thể sảy ra (36,6);(18,2);(12,3);(9,4);(6,6).

  1. \(\hept{\begin{cases}m+6+k=36\\m+6-k=1\end{cases}}\Leftrightarrow2m=25\)không thỏa mãn
  2. \(\hept{\begin{cases}m+6+k=18\\m+6-k=2\end{cases}}\Leftrightarrow2m=8\Leftrightarrow m=4\)\(\Rightarrow\Delta=64;2y^2-y-3=4\Leftrightarrow2y^2-y-7=0\)\(\Leftrightarrow\Delta_1=1^2+2.4.7=57\) loại
  3. \(\hept{\begin{cases}m+6+k=12\\m+6-k=3\end{cases}}\Leftrightarrow2m=3\)loại
  4. \(\hept{\begin{cases}m+6+k=9\\m+6-k=4\end{cases}}\Leftrightarrow2m=1\)loại
27 tháng 5 2017

5.\(\hept{\begin{cases}m+6+k=6\\m+6-k=6\end{cases}}\Leftrightarrow2m=0\Leftrightarrow m=0\)

\(2y^2-y-3=0\Leftrightarrow\orbr{\begin{cases}y=-1\\y=\frac{3}{2}\end{cases}}\)\(\Rightarrow y=-1\)

thay m=0 có \(\Delta=0\)phương trình ban đầu trở thành

\(3x^2=0\Leftrightarrow x=0\)

vậy cặp (x,y) nguyên là (0,-1)

12 tháng 11 2021

\(x^2+2y^2-2xy+y=0\) đề phải như thế này chứ

12 tháng 11 2021

à, hình như tớ chép sai, vậy như thế làm thế nào vậy?