1. Nếu chia số x cho 3 thì dư là những số nào?
2. Nếu chia x và y( x>y) cho 3 đều cùng một số dư thì x - y chia hết cho 3. Tại sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 8:
Từ 1 - 100 có:
\(\left(100-1\right):1+1=100\) (số)
Trong khoảng từ 1 - 100 ta có:
a) Số lượng số chia hết cho 2 là:
\(\left(100-2\right):2+1=50\) (số)
b) Số lượng số không chia hết cho 2 là:
\(100-50=50\) (số)
c) Số lượng số chia hết cho 5 là:
\(\left(100-5\right):5+1=20\) (số)
d) Số lượng số không chia hết cho 5 là:
\(100-20=80\) (số)
e) Số lượng số chia hết cho 3 là:
\(\left(99-3\right):3+1=33\) (số)
g) Số lượng số không chia hết cho 3 là:
\(100-33=67\) (số)
h) Số lượng số chia hết cho 9 là:
\(\left(99-9\right):9+1=11\) (số)
i) Số lượng số không chia hết cho 9 là:
\(100-11=89\) (số)
Câu 1: Ta có số: \(A=\overline{x036y}\)
A chia 2 dư 1 nên: \(y\in\left\{1;3;5;7;9\right\}\) (1)
A chia 5 dư 1 nên: \(y\in\left\{1;6\right\}\) (2)
Từ (1) và (2) ⇒ y = 1
\(\Rightarrow A=\overline{x0361}\)
Mà A chia 9 dư 1 \(\Rightarrow x+0+3+6+1=18+1\)
\(\Rightarrow x+10=19\)
\(\Rightarrow x=9\)
Vậy: \(A=90361\)
Bài 5:
Số phần vở cho mỗi học sinh tiên tiến là 1 phần => 279 học sinh tiến tiến nhận 279 phần vở
Số phần vở cho mỗi học sinh giỏi là 2 phần (gấp đôi học sinh tiên tiến) => 432 học sinh giỏi nhận được 864 phần vở
Tổng số phần bằng nhau:
279 + 864 = 1143 (phần vở)
Ta có: 2996: 1143 = 2 (dư 710)
Vậy cô văn thư tính nhẩm số vở phải mua chưa đúng
Bài 4:
M chia 2 dư 1
=>y chia 2 dư 1
mà 0<=y<=9
nên \(y\in\left\{1;3;5;7;9\right\}\left(9\right)\)
M chia 5 dư 3
=>y chia 5 dư 3
mà 0<=y<=9
nên \(y\in\left\{3;8\right\}\left(10\right)\)
Từ (9) và (10) suy ra y=3
=>\(M=\overline{6x523}\)
M chia hết cho 9
=>\(6+x+5+2+3⋮9\)
=>\(x+16⋮9\)
mà 0<=x<=9
nên x=2
Vậy: Số cần tìm là M=62523
Bài 1:
a: \(\overline{735x}⋮2\)
=>\(x⋮2\)
=>\(x\in\left\{0;2;4;6;8\right\}\left(1\right)\)
\(\overline{735x}\) chia 5 dư 3
=>x chia 5 dư 3
=>\(x\in\left\{3;8\right\}\left(2\right)\)
Từ (1) và (2) suy ra x=8
b: \(\overline{735x}\) chia 2 dư 1
=>x lẻ
mà 0<=x<=9
nên \(x\in\left\{1;3;5;7;9\right\}\left(3\right)\)
\(\overline{735x}\) chia 5 dư 4
=>x chia 5 dư 4
mà 0<=x<=9
nên \(x\in\left\{4;9\right\}\left(4\right)\)
Từ (3) và (4) suy ra x=9
Bài 2:
Đặt \(A=\overline{4x73y}\)
A chia cho 2 du1
=>y lẻ
mà 0<=y<=9
nên \(y\in\left\{1;3;5;7;9\right\}\left(5\right)\)
A chia 5 dư 1
=>y chia 5 dư 1
mà 0<=y<=9
nên \(y\in\left\{1;6\right\}\left(6\right)\)
Từ (5) và (6) suy ra y=1
=>\(A=\overline{4x731}\)
A chia hết cho 9
=>4+x+7+3+1 chia hết cho 9
=>x+14 chia hết cho 9
mà 0<=x<=9
nên x=4
Vậy: Số cần tìm là 44731
Bài 3:
Đặt \(B=\overline{4x73y}\)
B chia 2 dư 1
=>y chia 2 dư 1
mà 0<=y<=9
nên \(y\in\left\{1;3;5;7;9\right\}\)(7)
B chia 5 dư 3
=>y chia 5 dư 3
mà 0<=y<=9
nên \(y\in\left\{3;8\right\}\left(8\right)\)
Từ (7) và (8) suy ra y=3
=>\(B=\overline{4x733}\)
B chia 9 dư 4
=>4+x+7+3+3 chia 9 dư 4
=>x+13 chia hết cho 9
mà 0<=x<=9
nên x=5
Vậy: Số cần tìm là 45733
1. Nếu chia số x cho 3 thì dư là 1, 2
2. gọi t là số dư
x chia 3 dư t => x = 3*a + t
y chia 3 dư t => y = 3*b + t
=> x - y = 3(a-b)
vì a, b là những số nguyên
=> x - y chia hết cho 3