cho tam giác abc , m là trung điểm của ab, n là trung điểm của ac trên tia đối của tia nm lấy điểm d sao cho nm=nd a, cm am=cd b, cm mn =1/2bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét \(\Delta ANM\)và \(\Delta CND\)có :
+) \(MN=ND\left(gt\right).\)
+) \(AN=NC.\)
+) Góc \(ANM\)= Góc \(NCD.\)
\(\Rightarrow\Delta ANM=\Delta CND\left(c.g.c\right).\)
\(\Rightarrow CD=AM.\)
Mà \(AM=BM.\)
\(\Rightarrow CD=BM.\)
b/ Xét \(\Delta ABC\)có \(M,N\)lần lượt là trung điểm của \(AB,AC.\)
\(\Rightarrow MN\)là đường trung bình của \(\Delta ABC.\)
\(\Rightarrow MN//BC\)và \(MN=\frac{1}{2}BC.\)
c/ Ta có \(MN=\frac{1}{2}BC.\)
\(\Rightarrow2MN=BC.\)
\(\Leftrightarrow MD=BC.\)
Xét tứ giác \(BMDC\)có \(MD=BC\)và \(MD//BC.\)
\(\Rightarrow\)Tứ giác \(BMDC\)là hình bình hành.
\(\Rightarrow MC\)và \(BD\)là hai đường chéo của hình bình hành \(BMDC.\)
\(\Rightarrow BD\)đi qua trung điểm của đoạn thẳng \(MC.\)
#Riin
Ta có hình vẽ:
a/ Xét tam giác AMN và tam giác CDN có:
MN = ND (GT)
\(\widehat{ANM}=\widehat{CND}\) (đối đỉnh)
AN = NC (GT)
=> tam giác AMN = tam giác CDN (c.g.c)
Ta có: tam giác AMN = tam giác CDN
=> AM = CD (2 cạnh tương ứng)
Ta có: AM = MB (GT) (1)
Ta có: AM = CD (đã chứng minh trên) (2)
Từ (1), (2) => MB = CD (đpcm)
b/ Ta có: tam giác AMN = tam giác CDN (đã chứng minh trên)
=> \(\widehat{MAN}=\widehat{DCN}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong nên
=> AM // CD
Vì A,M,B thẳng hàng nên MB // CD
=> \(\widehat{BMC}=\widehat{MCD}\) (so le trong) (1)
Ta có: BM = CD (đã chứng minh trên) (2)
MC: cạnh chung (3)
Từ (1),(2),(3) => tam giác BMC = tam giác DMC
=> \(\widehat{DMC}=\widehat{MCB}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> MN // BC (đpcm)
a, xét tam giác MNA và tam giác DNA có : ND = NM (gt)
AN = NC do N là trđ của AC (gt)
góc MNA = góc DNA (đối đỉnh)
=> tam giác MNA = tam giác DNA (c-g-c)
=> CD = AM
góc MAN = góc NDC mà 2 góc này slt
=> AM // DC (đl)
b, CD = AM (câu a)
AM = MB do M là trđ của AB
=> MB = DC
AM // DC (CÂU A) => góc BMC = gcos MCD (slt)
xét tam giác MCD và tam giác CMB có : CM chung
=> tam giác MCD = tam giác CMB (c-g-c)
c, câu này tương tự a
a) Xét tứ giác AMCE có
Hai đường chéo AC và ME cắt nhau tại N là trung điểm của mỗi đường
> Tứ giác AMCE là hình bình hành
=> CE = AM, CE // AM
b) Vì CE = AM mà AM = MB
=> EC = BM
C) Xét tam giác ABC có
AM = MB; AN = NC
=> MN là đường trung bình của tam giác ABC
=> MN = 1/2BC; MN // BC
a: Xét tứ giác AMCD có
N là trung điểm của AC
N là trung điểm của MD
Do đó:AMCD là hình bình hành
Suy ra: CD//AM và CD=AM
=>CD//MB và CD=MB
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=1/2BC
a) Xét ∆AMN và ∆DCN:
MN = ND (gt)
Góc N1 = Góc N2 (hai góc đối đỉnh
AN = NC ( N là trung điểm của AC)
=> ∆AMN = ∆DCN (c-g-c)
=> AM = CD (dpcm)
b)
Ta có: M,N lần lượt là trung điểm của AB, AC
=> MN là đường trung bình của ∆ABC
=> MN = 1/2BC