K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2017

A B C M H D

a) Xét \(\Delta ABM\)\(\Delta HBM\)có:\(\hept{\begin{cases}\widehat{BAM}=\widehat{BHM}=90^0\\BM\\\widehat{ABM}=\widehat{HBM}\end{cases}\Rightarrow\Delta ABM=\Delta HBM}\)(CẠNH HUYỀN GÓC NHỌN)

b)\(\Delta ABM=\Delta HBM\)(câu a)\(\Rightarrow BA=BH\)

Xét \(\Delta BAC\)và \(\Delta BHD\)có:\(\hept{\begin{cases}\widehat{BAC}=\widehat{BHD}=90^0\\BA=BH\\\widehat{B}\end{cases}\Rightarrow\Delta BAC=\Delta BHD\left(g.c.g\right)\Rightarrow AC=HD}\)

c)\(\Delta BAC=\Delta BHD\Rightarrow\hept{\begin{cases}BC=BD\\\widehat{ACB}=\widehat{HDB}\end{cases}}\)

Xét \(\Delta BMC\)và \(\Delta BMD\)có:\(\hept{\begin{cases}\widehat{MBC}=\widehat{MBD}\\BC=BD\\\widehat{BCM}=\widehat{BDM}\end{cases}\Rightarrow\Delta BMC=\Delta BMD\left(g.c.g\right)\Rightarrow MD=MC\Rightarrow\Delta MCD}\)CÂN

d)\(\Delta ABM=\Delta HBM\Rightarrow AM=HM\Rightarrow\Delta AHM\)CÂN\(\Rightarrow\widehat{MAH}=\widehat{MHA}=\frac{180^0-\widehat{AMH}}{2}\left(1\right)\)

\(\Delta MCD\)CÂN\(\Rightarrow\widehat{MDC}=\widehat{MCD}=\frac{180^0-\widehat{DMC}}{2}\left(2\right)\)

Mà \(\widehat{AMH}=\widehat{DMC}\)(Đối đỉnh) \(\left(3\right)\)

Từ (1) ; (2) và (3)\(\Rightarrow\widehat{MAH}=\widehat{MHA}=\widehat{MDC}=\widehat{MCD}\)(So le trong)\(\Rightarrow AH\)// \(CD\)

ỦNG HỘ MIK NHA BN!

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0

a) Xét ΔCAH vuông tại H và ΔCDH vuông tại H có 

CH chung

AH=DH(gt)

Do đó: ΔCAH=ΔCDH(hai cạnh tương ứng)

Suy ra: CA=CD(Hai cạnh tương ứng)

Xét ΔCAD có CA=CD(cmt)

nên ΔCAD cân tại C(Định nghĩa tam giác cân)

b) Xét ΔBAH vuông tại H và ΔBDH vuông tại H có 

BH chung

AH=DH(gt)

Do đó: ΔBAH=ΔBDH(hai cạnh góc vuông)

Suy ra: BA=BD(Hai cạnh tương ứng)

Xét ΔABC và ΔDBC có 

CA=CD(cmt)

BC chung

AB=DB(cmt)

Do đó: ΔABC=ΔDBC(c-c-c)

Suy ra: \(\widehat{BAC}=\widehat{BDC}\)(hai góc tương ứng)

mà \(\widehat{BAC}=90^0\)(gt)

nên \(\widehat{BDC}=90^0\)

hay KD\(\perp\)CE(đpcm)

c) Xét ΔCAE vuông tại A và ΔCDK vuông tại D có 

CA=CD(cmt)

\(\widehat{ACE}=\widehat{DCK}\)(hai góc đối đỉnh)

Do đó: ΔCAE=ΔCDK(cạnh góc vuông-góc nhọn kề)

Suy ra: CE=CK(hai cạnh tương ứng)

Xét ΔCEK có CE=CK(cmt)

nên ΔCEK cân tại C(Định nghĩa tam giác cân)

d) Ta có: ΔCAE=ΔCDK(cmt)

nên AE=DK(hai cạnh tương ứng)

Ta có: BA+AE=BE(A nằm giữa B và E)

BD+DK=BK(D nằm giữa B và K)

mà BA=BD(cmt)

và AE=DK(cmt)

nên BE=BK

Ta có: CE=CK(cmt)

nên C nằm trên đường trung trực của EK(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: BE=BK(cmt)

nên B nằm trên đường trung trực của EK(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BC là đường trung trực của EK

hay BC\(\perp\)EK

mà BC\(\perp\)AD(cmt)

nên AD//EK(Định lí 1 từ vuông góc tới song song)

a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)

b: Sửa đề: vuônggóc BC, cắt AC tại H

Xet ΔCDH vuông tại D và ΔCAB vuông tại A có

góc C chung

=>ΔCDH đồng dạng với ΔCAB

c: BD/DC=AB/AC=4/3

a: Xét ΔBAM vuông tại A và ΔBHM vuông tại H có

BM chung

góc ABM=góc HBM

=>ΔBAM=ΔBHM

b: Xét ΔBDC có BA/BD=BH/BC

nên AH//DC

a: Xét ΔAMB và ΔAMC có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó: ΔAMB=ΔAMC

b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

Suy ra: MH=MK

20 tháng 3 2019

a, xét tam giác AMB và tam giác AMC có:

                AB=AC(gt)

                \(\widehat{BAM}\)   =\(\widehat{CAM}\)(gt)

                AM chung

suy ra tam giác AMB= tam giác AMC(c.g.c)

b,xét tam giác AHM và tam giác AKM có:

                AM cạnh chung

                \(\widehat{HAM}\)=\(\widehat{KAM}\)(gt)

suy ra tam giác AHM=tam giác AKM(CH-GN)

Suy ra AH=AK

c,gọi I là giao điểm của AM và HK

xét tam giác AIH và tam giác AIK có:

            AH=AK(theo câu b)

            \(\widehat{IAH}\)=\(\widehat{IAK}\)(gt)

            AI chung

suy ra tam giác AIH=tam giác AIK (c.g.c)

Suy ra \(\widehat{AIH}\)=\(\widehat{AIK}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIH}\)=\(\widehat{AIK}\)= 90 độ

\(\Rightarrow\)HK vuông góc vs AM

a: \(AC=\sqrt{BC^2-AB^2}=6\left(cm\right)\)

b: Xét ΔCAM vuông tại A và ΔCHM vuông tại H có

CM chung

\(\widehat{ACM}=\widehat{HCM}\)

Do đó: ΔCAM=ΔCHM

c: ta có: MA=MH

mà MH<MB

nên MA<MB

a: Ta có: BM//EF

EF\(\perp\)AH

Do đó: AH\(\perp\)BM

Xét ΔAMB có

AH là đường cao

AH là đường phân giác

Do đó: ΔAMB cân tại A

b: Xét ΔAFE có 

AH vừa là đường cao, vừa là đường phân giác

Do đó: ΔAFE cân tại A

=>AF=AE

Ta có: AF+FM=AM

AE+EB=AB

mà AF=AE và AM=AB

nên FM=EB

Xét ΔCMB có

D là trung điểm của CB

DF//MB

Do đó: F là trung điểm của CM

=>CF=FM

=>CF=FM=EB

23 tháng 1

phần c đâu ạ