tìm các số nguyên x,y thỏa mãn 1!+2!+3!+...+x!=y!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
4:
(x+1)(y-2)=5
=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)
Tu de bai suy ra 2y+2x=xy<=>...<=>y(2-x)= -2x<=>y=2x/(x-2)<=>y=(2x-4+4)/(x-2)<=>y=2+4/(x-2)
vi x la so nguyen Dưỡng nen x-2 la so nguyen duong va la ước cua 4 => x-2 =1 hoặc x-2= 4 => x=3 hoac x=6
Voi x=3 => y= 6
voi x=6=> y=3
vay cac cap so nguyen duong (x;y) can tim la (3;6); (6;3)
Tìm x,y thuộc N
biết 1! + 2! +x! = y^2 x=1 => y^2=4 => y=2 x=2 => y^2=5
=> loại x=3 => y^2=9 => y=3 x=4 => y^2=27
=> loại xét x>=5 suy ra x! luôn có tâṇ cùng = 0 (vì có 2 thừa số là 2 và 5 )
ta có 1!+2!=3
suy ra 1!+2!+x!
luôn có tâṇ cùng là 3 mà môṭ số chính phương không có tâṇ cùng là 3 nên ko có giá trị của y thỏa mãn vâỵ
tìm được 2 căp̣(x,y) là (1,2) và (3,3)