K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

\(2^{2^n}\forall n\in N,n\ge2\) thì \(2^{2^n}\) là số chẵn nên không thể tận cùng là 7, bạn xem lại đề

thiếu +1

10 tháng 3 2017

vì \(n\ge2\)nên \(2^n⋮4\)

\(\Rightarrow2^{2^n}\)có dạng là \(2^{4k}\left(k\in N^x\right)\)

Mà \(2^{4k}=16^k\)

Vì 1 số có tận cùng là 6 lũy thừa với số mũ khác 0 đều cho ta một số có tận cùng là 6

\(\Rightarrow2^{2^n}\)có tận cùng là 6 \(\Rightarrow2^{2^n}+1\)có tận cùng là 7 (đpcm)

15 tháng 4 2017

Vì n lớn hơn hoặc bằng 2

Nên n bằng 2 là bé nhất

Suy ra 22 mũ n = 22 mũ 2 = 24

Mà 24 có tận cùng 6

Nên 24 + 1 tận cùng 7

Với các trường hợp n lớn hơn 2 thì 22 mũ n đều tận cung 6 và 22 mũ n + 1 tận cùng 7 ( đpcm )
 

12 tháng 6 2017

TẤT CẢ CÁC SỐ \(5^n\)ĐỀU CÓ TẬN CÙNG LÀ 5 THÌ 5+2 = 7

27 tháng 11 2015

 A = n^5 - n = n(n^4-1) = n(n^2 +1)(n^2 -1) =n(n^2 +1)(n+1)(n-1) 
* n(n +1) chia hết cho 2 => A chia hết cho 2. 

*cm: A chia hết cho 5. 
n chia hết cho 5 => A chia hết cho 5. 
n không chia hết cho 5 => n = 5k + r (với r =1,2,3,4) 
- r = 1 => n - 1 = 5k chia hết cho 5 => A chia hết cho 5 
- r = 2 => n^2 + 1 = 25k^2 + 20k + 5 chia hết cho 5 => A chia hết cho 5 
- r = 3 => n^2 + 1 = 25k^2 + 30k + 10 chia hết cho 5 => A chia hết cho 5 
- r = 4 => n +1 = 5k + 5 chia hết cho 5 => A chia hết cho 5 
=> A luôn chia hết cho 5 
2,5 nguyên tố cùng nhau => A chia hết cho 2.5=10 => A tận cùng là 0 
=> đpcm

27 tháng 11 2015

Nói trước mình copy
n^5-n=n(n^4-1)=n(n²-1)(n²-4+5) 
=(n-2)(n-1)n(n+1)(n+2)+5(n-1)n(n+1) (a) 
*Vì (n-2)(n-1)n(n+1)(n+2) là tíc 5 số tự nhiên ltiếp nên chia hết cho 2,5 nên chia hết cho 10 
( vì (2,5)=1) (b) 
*Vì (n-1)n(n+1) là tích 3 số nguyên ltiếp nên chia hết cho 2 =>5(n-1)n(n+1) chia hết cho 10 (c) 
Từ (a),(b),(c)=>n^5-n chia hết cho 10 nên n^5 và n có cùng dư khi chia cho 10 
Đặt dư là r(r thuộc N,0≤r≤9) ta có:n^5=10k+r,n=10h+r đều có tận cùng là r (đpcm) 

gọi chữ số tận cùng của 7n là:a

ta có:7n+4=7n.74=(...a).2401=...a

=>đpcm

3 tháng 12 2017

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

28 tháng 10 2018

Chép hả Lý