K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 1 2023

Lời giải:

$n^3-3n^2-3n-1=n(n^2+n+1)-4n^2-4n-1$

$=n(n^2+n+1)-4(n^2+n+1)+3=(n^2+n+1)(n-4)+3$

Với $n$ nguyên,  để $n^3-3n^2-3n-1$ chia hết cho $n^2+n+1$ thì $3\vdots n^2+n+1$, hay $n^2+n+1$ là ước của $3$

Mà $n^2+n+1=(n+\frac{1}{2})^2+\frac{3}{4}>0$ nên:

$n^2+n+1\in\left\{1; 3\right\}$

$\Rightarrow n\in\left\{0; -1; 1; -2\right\}$

 

11 tháng 1 2016

Ta có: n3-3n2-3n-1=(n3-1)+(-3n2-3n-3)+3=(n-1)(n2+n+1)-3.(n2+n+1)+3

Để n3-3n2-3n-1 chia hết cho n2+n+1 thì: (n-1)(n2+n+1)-3.(n2+n+1)+3 chia hết cho n2+n+1

=>3 phải chia hết cho n2+n+1

=>n2+n+1 thuộc Ư(3)={1;-1;3;-3}

*n2+n+1=1

<=>n2+n=0

<=>n.(n+1)=0

<=>n=0 hoặc n=-1 (thỏa mãn cả hai)

*n2+n+1=-1

<=>n2+n+2=0 (vô lí vì: n2+n+2=(n+1/2)2+5/4 >0)

*n2+n+1=3

<=>n2+n-2=0

<=>n2-n+2n-2=0

<=>n.(n-1)+2.(n-1)=0

<=>(n-1)(n+2)=0

<=>n=1 hoặc n=-2 (thỏa mãn cả hai)

*n2+n+1=-3

<=>n2+n+4=0 (vô lí vì n2+n+4=(n+1/2)2+15/4>0)

Vậy n=-1;0;1;-2 thì n3-3n2-3n-1 chia hết cho n2+n+1

11 tháng 1 2016

Ta có: n3-3n2-3n-1=n3-4 -3(n2+n+1) chia hết cho n2+n+1

nên n3-4 chia hết cho n2+n+1

n3-1 chia hết cho n2+n+1

nên 3 chia hết cho n2+n+1

thử các TH ra

3 tháng 2 2019

Toi quen mat cach  lam roi xin loi nhe

21 tháng 11 2014

3n+13 chia hết cho n+1=> 3n+3+10 cg chia hết cho n+1=>3*(n+1)+10chia hết cho n+1=> 10 chia hết cho n+1=> tìm n

 

27 tháng 1 2017

3n - 1 ⋮ n - 2

<=> 3n - 6 + 5 ⋮ n - 2

<=> 3(n - 2) + 5 ⋮ n - 2

=> 5 ⋮ n - 2

Hay n - 2 ∈ Ư(5) = { ± 1; ± 5 }

Ta có bảng sau :

n - 2- 5- 11  5  
n- 3137

Vậy x = { - 3; 1 ; 3 ; 7 }

1 tháng 2 2017

a.n + 7 chia hết cho n+2

=> n + 2 + 5 chia hết cho n+2

=> 5 chia hết cho n+2

=> n + 2 thuộc tập hợp các số : 5;-5;1;-1

=> n thuộc tập hợp các số : 3;-7;-1;-3

b.9-n chia hết cho n-3

=> 6 - n - 3 chia hết cho n-3

=> 6 chia hết cho n-3

=> n -3 thuộc tập hợp các số : 1;-1;6;-6

=> n thuộc tập hợp các sô : 4;2;9;-3

Giải hết ra dài lắm

k mk nha