K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2018

Ta có , vì: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=3\)

=> \(1=\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}\)

=> \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

=> \(a=b=c\)

=>\(abc=a^3\left(đpcm\right)\)

2 tháng 1 2019

Đặt a/b=x^3, b/c=y^3,c/a=z^3 . Vì a,b,c khác 0 nên x,y,z khác 0.

Ta có x^3.y^3.z^3=a/b.b/c.c/a=1 => (xyz)^3=1 => xyz=1 => x^3 +y^3 +z^3 =3xyz <=> x^3+y^3+z^3-3xyz=0 

=> (x+y)^3 + z^3 -3xy(x+y) - 3xyz =0 <=> (x+y+z)[(x+y)^2 -(x+y)z + z^2 ] -3xy(x+y+z) =0 =>(x+y+z)(x^2+y^2+z^2+2xy-3xy-xz-yz)=0

Vi x,y,z khác 0 nên x^2+y^2+z^2-xy-yz-xz=0 => 2x^2+2y^2+2z^2-2xy-2yz-2xz=0 => (x^2-2xy+y^2)+(y^2-2yz+z^2)+(x^2-2xz+z^2)=0

<=> (x-y)^2+(y-z)^2+(x-z)^2=0 => x-y=0 ;y-z=0 ; x-z=0 => x=y=z => x^3=y^3=z^3 => a/b=b/c=c/a => a=b=c => abc=a^3=b^3=c^3 

Vậy tích abc lập phương của 1 số nguyên

27 tháng 10 2019

Ta có :

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\)

\(\Rightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow b\left(c+d\right)\left(d+a\right)+d\left(a+b\right)\left(b+c\right)=0\)( vì c khác a )

\(\Leftrightarrow abc-acd+bd^2-b^2d=0\)

\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)

\(\Leftrightarrow ac-bd=0\)

\(\Leftrightarrow ac=bd\)

\(\Rightarrow abcd=\left(ac\right)\left(bd\right)=\left(ac\right)^2\)

Vậy ......................................

AH
Akai Haruma
Giáo viên
1 tháng 10 2019

Lời giải:

Điều kiện đề bài đã cho tương đương với:

\(\frac{a}{a+b}+\frac{b}{b+c}-1+\frac{c}{c+d}+\frac{d}{a+d}-1=0\)

\(\Leftrightarrow \frac{a}{a+b}-\frac{c}{b+c}+\frac{c}{c+d}-\frac{a}{a+d}=0\)

\(\Leftrightarrow a(\frac{1}{a+b}-\frac{1}{a+d})+c(\frac{1}{d+c}-\frac{1}{b+c})=0\)

\(\Leftrightarrow \frac{a(d-b)}{(a+b)(a+d)}+\frac{c(b-d)}{(d+c)(b+c)}=0\)

\(\Leftrightarrow (d-b)(\frac{a}{(a+b)(a+d)}-\frac{c}{(c+d)(c+b)})=0\)

\(\Leftrightarrow \frac{(d-b)(a-c)(bd-ac)}{(a+b)(a+d)(c+d)(c+b)}=0\)

\(\Rightarrow (d-b)(a-c)(bd-ac)=0\)

Mà $a,b,c,d$ đôi một khác nhau nên suy ra $bd-ac=0$

$\Rightarrow bd=ac$

$\Rightarrow abcd=(bd)^2$ là số chính phương với mọi $a,b,c,d$ nguyên dương.

Ta có đpcm.

AH
Akai Haruma
Giáo viên
17 tháng 9 2019

Lời giải:

Điều kiện đề bài đã cho tương đương với:

\(\frac{a}{a+b}+\frac{b}{b+c}-1+\frac{c}{c+d}+\frac{d}{a+d}-1=0\)

\(\Leftrightarrow \frac{a}{a+b}-\frac{c}{b+c}+\frac{c}{c+d}-\frac{a}{a+d}=0\)

\(\Leftrightarrow a(\frac{1}{a+b}-\frac{1}{a+d})+c(\frac{1}{d+c}-\frac{1}{b+c})=0\)

\(\Leftrightarrow \frac{a(d-b)}{(a+b)(a+d)}+\frac{c(b-d)}{(d+c)(b+c)}=0\)

\(\Leftrightarrow (d-b)(\frac{a}{(a+b)(a+d)}-\frac{c}{(c+d)(c+b)})=0\)

\(\Leftrightarrow \frac{(d-b)(a-c)(bd-ac)}{(a+b)(a+d)(c+d)(c+b)}=0\)

\(\Rightarrow (d-b)(a-c)(bd-ac)=0\)

Mà $a,b,c,d$ đôi một khác nhau nên suy ra $bd-ac=0$

$\Rightarrow bd=ac$

$\Rightarrow abcd=(bd)^2$ là số chính phương với mọi $a,b,c,d$ nguyên dương.

27 tháng 10 2019

Câu hỏi của CTV - Toán lớp 8 - Học toán với OnlineMath

30 tháng 9 2019

cm ad=bc là đc

30 tháng 8 2019

1) \(a+b+c=0\Rightarrow2\left(a+b+c\right)=0\Rightarrow\frac{2\left(a+b+c\right)}{abc}=0\)

\(\Rightarrow M=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2\left(x+y+z\right)}{xyz}\)

\(\Rightarrow M=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{yz}+\frac{2}{zx}+\frac{2}{xy}\)

\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

1 tháng 12 2016

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=0\)

\(\Leftrightarrow a+b+c=0\)

Xét : \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right).\left(b+c\right).\left(c+a\right)=-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\) luôn chia hết cho 3