cho hình thang abcd có đoạn thẳng ac cắt đoạn thẳng bd tại o biết ab=1/2 dc và diện tích hình tam giác aob là 1cm2 :a) so sánh đoạn thẳng oa và oc b) tính diện tích hình abcd
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: XétΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng với ΔOCD
=>\(\dfrac{OA}{OC}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)
=>\(S_{BOC}=2\cdot S_{BOA}=2\left(cm^2\right)=S_{AOD}\)
=> S ABCD=1+4+2+2=9cm2
Ta có hình vẽ :
a)
+ SABC = 1/2 SBCD [Vì đáy AB = 1/2 CD, đường cao kẻ từ D tới AB = đường cao kẻ từ B tới CD vì đều là đường cao của hình thang ABCD]
- Vì SABD = 1/2 SBCD mà 2 hình này có chung đáy BD suy ra Đường cao kẻ từ A tới BD = 1/2 đường cao kẻ từ C tới BD hay đường cao kẻ từ A tới BO = 1/2 đường cao kẻ từ C tới BO]
+ SABO = 1/2 SBOC [Vì chung đáy BO, đường cao kẻ từ A tới BO = 1/2 đường cao kẻ từ C tới BO]
- Vì SABO = 1/2 SBOC mà 2 hình này có chung đường cao kẻ từ B tới AC suy ra đáy AO = 1/2 OC
Vậy AO = 1/2 OC
b)
Theo câu a thì SABO = 1/2 SBOC. Vậy diện tích tam giác BOC là :
1 x 2 = 2 (cm2)
Diện tích tam giác ABC là :
1 + 2 = 3 (cm2)
+ SABC = 1/2 SACD [Vì đáy AB = 1/2 CD, đường cao kẻ từ C tới AB = đường ca kẻ từ A tới CD vì đều là đường cao của hình thang ABCD]
Diện tích tam giác ACD là :
3 x 2 = 6 (cm2)
Diện tích hình thang ABCD là :
6 + 3 = 9 (cm2)
b: Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng với ΔOCD
=>OA/OC=OB/OD=1/2
=>S OAD=1/2*S OCD=2cm2; S BOC=2cm2
=>S ABCD=1+2+2+4=9cm2
c: AB/CD=OA/OC=1/2
a)
Theo đề ra: \(AB=\dfrac{1}{2}CD\)
Đường cao kẻ từ D đến AB bằng đường cao kẻ từ B dến CD vì đều là đường cao của hình thang ABCD
\(\Rightarrow S_{ABC}=\dfrac{1}{2}SBCD\)
mà hai hình tam giác này có chung đáy BD
\(\Rightarrow\) Đường cao kẻ từ A đến \(BD=\dfrac{1}{2}\) đường cao kẻ từ C đến BD, hay đường cao kẻ từ A đến \(BO=\dfrac{1}{2}\) đường cao kẻ từ C đến BO
Vì chung đáy BO, đường cao kẻ từ A đến \(BO=\dfrac{1}{2}\) đường cao kẻ từ C đến BO
\(\Rightarrow S_{ABO}=\dfrac{1}{2}S_{BOC}\)
mà hai hình tam giác này có chung đường cao kẻ từ B đến AC
\(\Rightarrow AO=\dfrac{1}{2}CO\)
b)
Theo phần a), \(S_{ABO}=\dfrac{1}{2}S_{BOC}\)
\(S_{BOC}=1\times2=2cm^2\)
\(S_{ABC}=1+2=3cm^2\)
Mà \(AB=\dfrac{1}{2}CD\), đường cao kẻ từ C đến AB bằng đường cao kẻ từ A đến CD đều là đường cao của hình thang ABCD
\(\Rightarrow S_{ABC}=\dfrac{1}{2}S_{ACD}\)
\(S_{ACD}=3\times2=6cm^2\)
\(S_{ABCD}==6+3=9cm^2\).
cứu tui