K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

\(\left[1-\frac{1}{21}\right]\times\left[1-\frac{1}{28}\right]\times\left[1-\frac{1}{36}\right]\times...\times\left[1-\frac{1}{1326}\right]\)

\(=\frac{20}{21}\times\frac{27}{28}\times\frac{35}{36}\times...\times\frac{1325}{1326}\)

\(=\frac{40}{42}\times\frac{54}{56}\times\frac{70}{72}\times...\times\frac{2650}{2652}\)

\(=\frac{5\times8}{6\times7}\times\frac{6\times9}{7\times8}\times\frac{7\times10}{8\times9}\times...\times\frac{50\times53}{51\times52}\)

\(=\frac{5\times6\times7\times...\times50}{6\times7\times8\times...\times51}\times\frac{8\times9\times10\times...\times53}{7\times8\times9\times...\times52}\)

\(=\frac{5}{51}\times\frac{53}{7}\)

\(=\frac{265}{357}\)

3 tháng 3 2020

= 20/21 . 27/28 . 35/36 . ...... 1325/1326

= 2/2(20/21 . 27/28 . 35/36 . ...... 1325/1326)

= 40/42. 54/56 . 70/72 ......2650/2652

= 5.8 / 6.7 . 6.9/ 7.8 . 7.10/8.9 ..... 50.53/51.52

.......Sau đọc t cũng k hiểu nữa

Nguồn: của bn Thành :>>>>>

26 tháng 7 2019

#)Giải :

\(\left(1-\frac{1}{15}\right)\left(1-\frac{1}{21}\right)\left(1-\frac{1}{28}\right)...\left(1-\frac{1}{210}\right)=\frac{14}{15}\times\frac{20}{21}\times\frac{27}{28}\times...\times\frac{209}{210}\)

\(=\frac{28}{30}\times\frac{40}{42}\times\frac{54}{56}\times...\times\frac{418}{420}=\frac{4\times7}{5\times6}\times\frac{5\times8}{6\times7}\times\frac{6\times9}{7\times8}\times...\times\frac{19\times22}{20\times21}\)

\(=\frac{4\times5\times6\times...\times19}{5\times6\times7\times...\times20}\times\frac{7\times8\times9\times...\times22}{6\times7\times8\times...\times21}=\frac{4}{20}\times\frac{22}{6}=\frac{11}{15}\)

\(\left(1-\frac{1}{15}\right).\left(1-\frac{1}{21}\right).\left(1-\frac{1}{28}\right).....\left(1-\frac{1}{210}\right)\)

\(=\left(\frac{15}{15}-\frac{1}{15}\right).\left(\frac{21}{21}-\frac{1}{21}\right).\left(\frac{28}{28}-\frac{1}{28}\right).....\left(\frac{210}{210}-\frac{1}{210}\right)\)

\(=\frac{14}{15}.\frac{20}{21}.\frac{27}{28}....\frac{209}{210}\)

\(=\frac{2.7}{3.5}.\frac{5.4}{7.3}.\frac{3.9}{4.7}....\frac{11.19}{21.10}\)

\(=\frac{2}{3}.\frac{19}{10}\)

\(=\frac{19}{15}\)

22 tháng 4 2019

đụ cha mi

mi trù ta thi rớt HK II mà ta giúp mày hả

mấy bài này cũng dễ ẹt nữa

đừng có mơ ta sẽ giúp mày

ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha
 

3 tháng 5 2019

\(B=\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{99\cdot101}\right)\)

\(B=\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot\cdot\cdot\frac{100^2}{99\cdot101}\)

\(B=\frac{2^2\cdot3^2\cdot4^2\cdot\cdot\cdot100^2}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot\cdot\cdot99\cdot101}\)

\(B=\frac{\left(2\cdot3\cdot4\cdot\cdot\cdot100\right)\cdot\left(2\cdot3\cdot4\cdot\cdot\cdot100\right)}{\left(1\cdot2\cdot3\cdot\cdot\cdot99\right)\cdot\left(3\cdot4\cdot5\cdot\cdot\cdot101\right)}\)

\(B=\frac{100\cdot2}{1\cdot101}\)

\(B=\frac{200}{101}\)

13 tháng 7 2019

#)Giải :

a)\(2009^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-15^3\right)}=2009^{\left(1000-1^3\right)...\left(1000-10^3\right)...\left(1000-15^3\right)}=2009^0=1\)

b)\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...\left(\frac{1}{125}-\frac{1}{5^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...0...\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)

26 tháng 6 2016

\(C=\frac{5}{2}\cdot\frac{7}{5}\cdot\frac{9}{7}\cdot\frac{11}{9}\cdot...\cdot\frac{2017}{2015}\cdot\frac{2019}{2017}=\frac{2019}{2}\)

\(D=\left(1-\frac{1}{\frac{2\cdot3}{2}}\right)\cdot\left(1-\frac{1}{\frac{3\cdot4}{2}}\right)\cdot\left(1-\frac{1}{\frac{4\cdot5}{2}}\right)\cdot\left(1-\frac{1}{\frac{5\cdot6}{2}}\right)\cdot...\cdot\left(1-\frac{1}{\frac{39\cdot40}{2}}\right)\)

\(=\left(1-\frac{2}{2\cdot3}\right)\cdot\left(1-\frac{2}{3\cdot4}\right)\cdot\left(1-\frac{2}{4\cdot5}\right)\cdot\left(1-\frac{2}{5\cdot6}\right)\cdot...\cdot\left(1-\frac{2}{39\cdot40}\right)\cdot\)

Nhận xét: \(1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n+2\right)\left(n-1\right)}{n\left(n+1\right)}\)nên:

\(D=\frac{4\cdot1}{2\cdot3}\cdot\frac{5\cdot2}{3\cdot4}\cdot\frac{6\cdot3}{4\cdot5}\cdot\frac{7\cdot4}{5\cdot6}\cdot\frac{8\cdot5}{6\cdot7}\cdot...\cdot\frac{41\cdot38}{39\cdot40}=\)

\(D=\frac{4\cdot5\cdot6\cdot7\cdot...\cdot41\times1\cdot2\cdot3\cdot4\cdot...\cdot38}{2\cdot3\cdot4\cdot5\cdot...\cdot39\times3\cdot4\cdot5\cdot6\cdot..\cdot40}=\frac{1}{39}\cdot\frac{41}{3}=\frac{41}{117}\)

27 tháng 8 2018

\(\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{2004\cdot2006}\right)\)

\(=\frac{4}{1\cdot3}+\frac{9}{2\cdot4}+\frac{16}{3\cdot5}+...+\frac{420025}{2004\cdot2006}\)

\(=\frac{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2005\cdot2005\right)}{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2004\cdot2006\right)}\)

\(=\frac{\left(2\cdot3\cdot4\cdot...\cdot2005\right)\left(2\cdot3\cdot4\cdot...\cdot2005\right)}{\left(1\cdot2\cdot3\cdot...\cdot2004\right)\left(3\cdot4\cdot5\cdot...\cdot2006\right)}\)

\(=\frac{2005\cdot2}{1\cdot2006}\)

\(=\frac{4010}{2006}\)

27 tháng 8 2018

\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)...\left(1+\frac{1}{2004.2006}\right)\)

\(=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}....\frac{2004.2006+1}{2004.2006}\)

\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}....\frac{2005^2}{2004.2006}\)

\(=\frac{2.3....2005}{1.2....2004}.\frac{2.3...2005}{3.4....2006}\)

\(=2005.\frac{2}{2006}=\frac{2005}{1003}\)