Cho \(\text{ P = ( n + 3) : ( 2n + 1 )}\)
a) Tìm giá trị của n để P là số nguyên tố
b) Chứng minh với mọi giá trị của n vừa tìm được ở câu a thì \(\text{P = ( 5n + 9 ) : ( n + 3 )}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(a+2\right)^2-\left(a-2\right)^2\)
\(=a^2+4a+4-a^2+4a-4=8a⋮4\)
b: \(\Leftrightarrow n^3-n^2+3n^2-3n+2⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{2;0;3;-1\right\}\)
Cho A=2n+3/n, với n thuộc Z
Với giá trị nào của n thì A là phân số
Tìm giá trị của n để A là số nguyên
a) Để P là số nguyên : trước hết P phải là số nguyên <=> n+ 3 chia hết cho 2n + 1
=> 2(n+3) = 2n + 6 chia hết cho 2n + 1
2n + 1 chia hết cho 2n + 1
=> (2n + 6) - (2n +1) = 5 chia hết cho 2n + 1
=> 2n + 1 \(\in\) Ư(5) = {1;5}
+) 2n + 1 = 1 => n = 0 => P = 3: 1 = 3 là số nguyên tố => Nhận
+) 2n + 1 = 5 => n = 2 => P = 5: 5 = 1 (Loại)
Vậy n = 0 thì P nguyênn tố
b) Với n = 0 => (5n + 9) : (n+3) = 9 : 3 = 3 = P
=> P = (5n + 9) : (n+3) với n = 0 tìm đc ở câu a