Cho tam giác ABC có góc B=70 độ.AB=12cm.AC=16cm.Trên AC lấy D sao cho AD=9 cm .Tính góc BAC?
cứu với .minh se tick cho cac ban.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: AC=7,5
a: Sửa đề: ΔABC đồng dạng với ΔCBD
Xét ΔABC và ΔCBD có
BA/BC=CB/BD
góc B chung
=>ΔABC đồng dạng với ΔCBD
b: ΔABC đồng dạng với ΔCBD
=>AC/CD=AB/CB
=>7,5/CD=6/9=2/3
=>CD=11,25(cm)
a: \(\widehat{ACB}=180^0-70^0-67^0=43^0\)
b: Xét ΔABD có AB=AD
nên ΔABD cân tại A
c: Xét ΔABE vuông tại E và ΔADF vuông tại F có
AB=AD
\(\widehat{BAE}\) chung
Do đó: ΔBAE=ΔDAF
d: Xét ΔABD có AF/AB=AE/AD
nên FE//BD
chứng minh:
ta có: ad/ab = 9/12 = 3/4 ; ab/ac =12/16 = 3/4 => ad/ab = ab/ac (1)
ta xét: tam giác abd & tam giác acb
góc bad chung (1)
=> tam giác abd có tam giác acb
=> góc bda = góc cba = 70 độ
ta có: (góc) bda + bdc = 180 độ ( hai góc kề bù)
=> bdc = 180 - 70
=> bdc = 110 độ
(Hình bạn tự vẽ)
a) Ta có: \(\dfrac{AB}{BC}=\dfrac{6}{9}=\dfrac{2}{3}\)
\(\dfrac{BC}{BD}=\dfrac{9}{6+7,5}=\dfrac{2}{3}\)
Xét ΔABC và ΔCBD có:
Góc B chung
\(\dfrac{AB}{BC}=\dfrac{BC}{BD}\)\(\left(=\dfrac{2}{3}\right)\)
⇒ΔABC ∼ ΔCBD (c.g.c)
b) Theo câu a ta có: ΔABC ∼ ΔCBD
⇒ \(\dfrac{AB}{AC}=\dfrac{CB}{CD}\)\(=\dfrac{6}{7,5}=\dfrac{9}{CD}\)
⇒ \(CD=\dfrac{7,5.9}{6}\)\(=\dfrac{45}{4}=11,25\)
c) Theo câu a ta có: ΔABC ∼ ΔCBD
⇒ Góc BAC = góc BCD (1)
Xét ΔBCD có: \(\dfrac{BA}{AD}=\dfrac{BC}{CD}\)
Hay \(\dfrac{6}{7,5}=\dfrac{9}{11,25}\)\(=\dfrac{4}{5}\)
⇒ CA là phân giác góc BCD
⇒ Góc ACB= góc ACD (2)
Từ (1), (2) ⇒ góc BAC = 2 góc ACB
câu 2 :
a) Xét tam giác AMB và tam giacsDMC có
AB = AC (gt)
góc AMB = gocsDMC ( đối đỉnh )
BM =MC ( vì M là trung điểm )
do đó tam giác AMB = tam giác DMC
b) => góc BAM = góc CDM ( 2 góc tương ứng )
=> AB // CD ( 2 góc bằng nhau ở vị trí so le trong)
c) Xét tam giác ABM = tam giác ACM ( c.c.c)
=>góc AMB = góc AMC ( 2 góc tương ứng )
mà góc AMB + AMC = 180o ( kề bù )
=> AMB = AMC = \(\dfrac{180^o}{2}=90^0\)
=> AM vuông góc với BC
110 nha