K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2017

Ta có: \(\sqrt[k+1]{\frac{k+1}{k}}>1\) với \(k=1,2,...,n\)

Áp dụng BĐT AM-GM cho \(k+1\) số ta có: 

\(\sqrt[k+1]{\frac{k+1}{k}}=\sqrt[k+1]{\frac{1.1...1}{k}\cdot\frac{k+1}{k}}\)

\(< \frac{1+1+1+...+1+\frac{k+1}{k}}{k+1}=\frac{k}{k+1}+\frac{1}{k}=1+\frac{1}{k\left(k+1\right)}\)

Suy ra \(1< \sqrt[k+1]{\frac{k+1}{k}}< 1+\left(\frac{1}{k}-\frac{1}{k+1}\right)\)

Lần lượt cho \(k=1,2,3,...,n\) rồi cộng lại ta được:

\(n< \sqrt{2}+\sqrt[3]{\frac{3}{2}}+...+\sqrt[n+1]{\frac{n+1}{n}}< n+1-\frac{1}{n}< n+1\)

Vậy \(\left[a\right]=n\)

31 tháng 10 2018

Rút gọn bt:

Câu 1: a, \(\left(\sqrt{50}+\sqrt{48}-\sqrt{72}\right)2\sqrt{3}\)

b, \(\sqrt{25a}+2\sqrt{45a}-3\sqrt{80a}+2\sqrt{16a}\left(a\ge0\right)\)ư

Câu 2: Cho bt: P =\(\left(1+\frac{\sqrt{a}}{a+1}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)

a, Tìm ĐKXĐ . Rút gọn P 

B, Tìm x nguyên để P có gt nguyên

c, Tìm GTNN của P với a >1

Câu 3: Giair các pt 

a, \(\sqrt{\left(2x-1\right)^2}=4\)

b, \(\sqrt{4x+4}+\sqrt{9x+9}-8\sqrt{\frac{x+1}{16}}=5\)

a) Ta có: \(P=\left(\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{\sqrt{a}}{a-1}\right):\left(\frac{2}{a}-\frac{2-a}{a\sqrt{a}+a}\right)\)

\(=\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right):\left(\frac{2\left(\sqrt{a}+1\right)}{a\left(\sqrt{a}+1\right)}-\frac{2-a}{a\left(\sqrt{a}+1\right)}\right)\)

\(=\frac{a+\sqrt{a}+\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}:\frac{2\sqrt{a}+2-2+a}{a\left(\sqrt{a}+1\right)}\)

\(=\frac{a+2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\cdot\frac{a\left(\sqrt{a}+1\right)}{a+2\sqrt{a}}\)

\(=\frac{a}{\sqrt{a}-1}\)

b)

ĐKXĐ: \(a\notin\left\{1;0\right\}\)

Để P-2 là số dương thì P-2>0

\(\frac{a}{\sqrt{a}-1}-2>0\)

\(\Leftrightarrow\frac{a}{\sqrt{a}-1}-\frac{2\left(\sqrt{a}-1\right)}{\sqrt{a}-1}>0\)

\(\Leftrightarrow\frac{a-2\sqrt{a}+2}{\sqrt{a}-1}>0\)

\(a-2\sqrt{a}+2=\left(\sqrt{a}-1\right)^2+1>0\forall a\)

nên \(\sqrt{a}-1>0\)

\(\Leftrightarrow\sqrt{a}>1\)

\(\Leftrightarrow a>1\)(tm)

Vậy: Khi a>1 thì P-2 là số dương

27 tháng 6 2020

A=\((\frac{\sqrt{a}\left(\sqrt{a}+1\right)+\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}):\left(\frac{2\left(\sqrt{a}+1\right)-\left(2-a\right)}{a\left(\sqrt{a}+1\right)}\right)\)

\(A=\left(\frac{a+\sqrt{a}+\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right):\left(\frac{2\sqrt{a}+2-2+a}{a\left(\sqrt{a}+1\right)}\right)\)

\(A=\frac{a+2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}.\frac{a\left(\sqrt{a}+1\right)}{2\sqrt{a}-a}\)

\(A=\frac{a}{\sqrt{a}-1}\)

31 tháng 10 2018

\(a,\left(\sqrt{50}+\sqrt{48}-\sqrt{72}\right)2\sqrt{3}\)

\(=\left(5\sqrt{2}+4\sqrt{3}-6\sqrt{2}\right)2\sqrt{3}\)

\(=\left(4\sqrt{3}-\sqrt{2}\right)2\sqrt{3}\)

\(=24-2\sqrt{6}\)

Dạng 1: Các phép tính với số thựcCâu 1: Làm tính bằng cách hợp lí x4 = 16Câu 2: Tìm x ( x + 5) 3 = -64 Dạng 2: Tỉ lệ thứcCâu 3: Tìm x, biết:* 2\(\frac{1}{3}\): \(\frac{1}{3}\)= \(\frac{7}{9}\): x* 1\(\frac{1}{3}\): 0,8 = \(\frac{2}{3}\): (0,1x)Câu 4: Tìm hai số x và y biết x : 2 = y : (-5) và x - y = -7 Dạng 3: Đai lượng tỉ lệ thuận, tỉ lệ nghịch - Toán chia tỉ lệCâu 5: 5m dây đồng nặng 43g....
Đọc tiếp

Dạng 1: Các phép tính với số thực

Câu 1: Làm tính bằng cách hợp lí

x4 = 16

Câu 2: Tìm x

( x + 5) 3 = -64

Dạng 2: Tỉ lệ thức

Câu 3: Tìm x, biết:

* 2\(\frac{1}{3}\): \(\frac{1}{3}\)= \(\frac{7}{9}\): x

* 1\(\frac{1}{3}\): 0,8 = \(\frac{2}{3}\): (0,1x)

Câu 4: Tìm hai số x và y biết x : 2 = y : (-5) và x - y = -7

Dạng 3: Đai lượng tỉ lệ thuận, tỉ lệ nghịch - Toán chia tỉ lệ

Câu 5: 5m dây đồng nặng 43g. Hỏi 10km dây đồng như thế nặng bao nhiêu kilogam?

Câu 6: Số học sinh giỏi, khá, trung bình của khối 7 lần lượt tỉ lê với 2 : 3: 5. Tính số học sinh khá, giỏi, trung bình, biết tổng số học sinh khá và học sinh trung bình hơn học sinh giỏi là 180 em

Dạng 4: Hàm số

Câu 7: Cho hàm số y = f(x) = x2 - 8

a) Tính f(3) ; f(-2)

b) Tìm x khi biết giá trị tương ứng y là 17

Ai giúp mk với. Mk tick cho. Bạn nào biết giải bài nào thì giải giúp mk với.

Cảm ơn nhìu. (^///.\\\^)

2
16 tháng 12 2016

Câu 1:

\(x^4=16\)

\(\Rightarrow x=2\) hoặc \(x=-2\)

Vậy \(x\in\left\{2;-2\right\}\)

Câu 2:
\(\left(x+5\right)^3=-64\)

\(\Rightarrow\left(x+5\right)^3=\left(-4\right)^3\)

\(\Rightarrow x+5=-4\)

\(\Rightarrow x=-9\)

Vậy \(x=-9\)

Câu 4:

Giải:

Ta có: \(\frac{x}{2}=\frac{y}{-5}\)\(x-y=-7\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)

+) \(\frac{x}{2}=-1\Rightarrow x=-2\)

+) \(\frac{y}{-5}=-1\Rightarrow y=5\)

Vậy cặp số \(\left(x;y\right)\)\(\left(-2;5\right)\)

 

 

16 tháng 12 2016

Câu 5:

Giải:

Đổi 10km = 10000m

Gọi 10000m dây đồng nặng x ( kg )

Vì số dây đồng tỉ lệ thuận với số cân nặng nên ta có:

\(\frac{5}{43}=\frac{10000}{x}\)

\(\Rightarrow x=\frac{10000.43}{5}=86000\left(kg\right)\)

Vậy 1km dây đồng nặng 86000 kg

Câu 6:

Giải:

Gọi số học sinh giỏi, khá , trung bình của khối 7 là a, b, c \(\left(a;b;c\in N\right)\)

Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)\(c+b-a=180\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{c+b-a}{3+5-2}=\frac{180}{6}=30\)

+) \(\frac{a}{2}=30\Rightarrow a=60\)

+) \(\frac{b}{3}=30\Rightarrow b=90\)

+) \(\frac{c}{5}=30\Rightarrow c=150\)

Vậy số học sinh giỏi là 60 học sinh

số học sinh khá là 90 học sinh

số học sinh trung bình là 150 học sinh

Câu 7:

a) Ta có: \(y=f\left(x\right)=x^2-8\)

\(f\left(3\right)=3^2-8=9-8=1\)

\(f\left(-2\right)=\left(-2\right)^2-8=4-8=-4\)

b) Khi y = 17

\(\Rightarrow17=x^2-8\)

\(\Rightarrow x^2=25\)

\(\Rightarrow x=5\) hoặc \(x=-5\)

Vậy \(x\in\left\{5;-5\right\}\)
 

 

NV
22 tháng 6 2019

\(x=\frac{1}{2}\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}}=\frac{1}{2}.\left(\sqrt{2}-1\right)\)

\(\Rightarrow2x=\sqrt{2}-1\Rightarrow2x+1=\sqrt{2}\)

\(\Rightarrow4x^2+4x+1=2\Rightarrow4x^2+4x-1=0\)

\(B=\left[x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+4x^2+4x-1-1\right]^{2018}+2018\)

\(=\left(-1\right)^{2018}+2018=2019\)