Cho 2 số tự nhiên a và b sao cho (a + 2016b) ⋮ 2017. Chứng minh rằng:
A = (2a + 2015b)(3a + 2014b)...(2015a + 2b) ⋮ 20172014.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(5a+2b⋮7\Rightarrow2\left(5a+2b\right)=10a+4b⋮7\)
\(7a⋮7\)
\(\Rightarrow10a+4b-7a=3a+4b⋮7\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2015a}{2015c}=\frac{2016b}{2016d}\)
\(=\frac{2015a-2016b}{2015c-2016d}=\frac{2015a+2016b}{2015c+2016d}\)
\(\Rightarrow\frac{2015a-2016b}{2015a+2016b}=\frac{2015c-2016d}{2015c+2016d}\)(đpcm)
Từ \(\frac{a}{b}=\frac{c}{d}\)ta suy ra:
\(\frac{a}{b}=\frac{c}{d}=\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}=\frac{a-b}{a+b}=\frac{c-d}{c+d}\Rightarrow\frac{2015a-2016b}{2015a+2016b}\)\(=\frac{2015c-2016d}{2015c+2016d}\)(Áp dụng tính chất dãy tỉ số bằng nhau)
a) Ta có \(a\le b\)
\(\Rightarrow2015a\le2015b\)
\(\Rightarrow2015a-2016\le2015b-2016\)
b) Ta có \(a\le b\)
\(\Rightarrow-a\ge-b\)
\(\Rightarrow-2015a\ge-2015b\)
Xin lỗi mình bấm nhầm
\(\Rightarrow-2015a\ge-2015b\)
\(\Rightarrow-2015a-2017\ge-2015b-2017\)
Mà \(-2015a-2016>-2015a-2017\)
Nên \(-2015a-2016>-2015b-2017\)
(3a+2b).8+10a+b=24a+16a+10a+b=34a+17b chia hết cho 17
⇒(3a+2b).8+10a+b chia hết cho 17
Mà 3a+2b chia hết cho 17⇒(3a+2b).8 chia hết cho 17
⇒10a+b chia hết cho 17(đpcm)
b)Ta có :
xy+x-y=4
⇒x.(y+1)-(y+1)=3
⇒(x-1).(y+1)=3
Vì x,y ∈Z
⇒x-1,y+1∈Z
⇒x-1,y+1∈Ư(3)
Lập bảng giá trị
x -1 1 3 -1 -3
y+1 3 1 -3 -1
x 2 4 0 -2
y 2 0 -4 -2
Vậy cặp số (x,y) cần tìm là :
(2,2),(4,0),(0,-4),(-2,-2)
\(\left(3a+2b\right)⋮17\Leftrightarrow9\left(3a+2b\right)⋮17\Leftrightarrow\left(27a-17a+18b-17b\right)⋮17\)
\(\Leftrightarrow\left(10a+b\right)⋮17\)
\(\left(3a+2b\right)⋮17\Leftrightarrow13\left(3a+2b\right)⋮17\Leftrightarrow\left(39a-2.17a+26b-17b\right)⋮17\)
\(\Leftrightarrow\left(5a+9b\right)⋮17\)