K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

\(\frac{a}{b}.\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)

Xét Hiệu : \(\frac{a}{b}.\frac{a}{c}-\left(\frac{a}{b}+\frac{a}{c}\right)\)

\(=\frac{a^2}{bc}-\frac{ac+ab}{bc}\)

\(=\frac{a^2}{bc}-\frac{a\left(c+b\right)}{bc}\)

\(=\frac{a^2}{bc}-\frac{a^2}{bc}\)  \(\left(c+b=a\right)\)

\(=0\)

\(\Rightarrow\frac{a}{b}.\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\) (ĐPCM)

24 tháng 3 2017

Ta có:

\(VT=\frac{a}{b}.\frac{a}{c}=\frac{aa}{bc}=\frac{a^2}{bc}\)

\(VP=\frac{a}{b}+\frac{a}{c}=\frac{ac}{bc}+\frac{ab}{bc}=\frac{a\left(c+b\right)}{bc}=\frac{aa}{bc}=\frac{a^2}{bc}\)

\(\Rightarrow VT=VP\)

Vậy nếu \(c+b=a\) thì \(\frac{a}{b}.\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\) (Đpcm)

18 tháng 9 2019

Câu 2:

Ta có \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}=\frac{a+c}{b+d}.\)

\(\Rightarrow\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\left(đpcm\right).\)

Chúc bạn học tốt!

19 tháng 9 2019

thank you so much

16 tháng 7 2017

Đặt \(\frac{a}{b}=\frac{b}{d}=k\)

\(\Rightarrow k^2=\frac{a^2}{b^2}=\frac{b^2}{d^2}\)

Áp dụng TCDTSBN ta có:

\(k^2=\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{b^2+d^2}\) (1)

Lại có: \(k^2=k.k=\frac{a}{b}\cdot\frac{b}{d}=\frac{a}{d}\) (2)

Từ (1) và (2) suy ra \(\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\) (đpcm)

16 tháng 7 2017

Cảm ơn bạn bạn giải bài tiếp theo ik bài mà mk nvuwaf đăng í tìm 3 số ....

cảm ơn nhìu

23 tháng 2 2018

Ta có : 

\(\frac{a}{b}=\frac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)

Vậy nếu \(\frac{a}{b}=\frac{c}{d}\) thì \(\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)

23 tháng 2 2018

rk phùng minh quân lm đc câu này ko

chứng minh rằng nếu a/b=c/d thì a/b=c/d=a+c/b+d

lm đc ko mk đg gấp

1 tháng 9 2018

C1 : Áp dụng BDT Bunhiacopxki

\(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\ge\left(ax+by+cz\right)^2\)(Dấu bằng xảy ra khi \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\))

=> ĐPCM

1 tháng 9 2018

Ta có: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\Rightarrow b^2x^2=a^2y^2;b^2z^2=c^2y^2;c^2x^2=a^2z^2\)(1)

\(VP=a^2x^2+b^2y^2+c^2z^2+axby+axby+bycz+bycz+czax+czax\)

\(=a^2x^2+b^2y^2+c^2z^2+a^2y^2+b^2x^2+b^2z^2+c^2y^2+c^2x^2+a^2z^2\)(Do c/m ở (1))

\(=a^2\left(x^2+y^2+z^2\right)+b^2\left(x^2+y^2+z^2\right)+c^2\left(x^2+y^2+z^2\right)\)

\(=\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=VT\)

26 tháng 11 2019

Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)=\left(x,y,z\right)\)

Khi đó :
\(Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}\)

Ta có :

\(x+y=\frac{a-b}{c}+\frac{b-c}{a}=\frac{a^2-ab+bc-c^2}{ac}=\frac{b\left(c-a\right)-\left(c-a\right)\left(c+a\right)}{ca}\)

\(=\frac{b\left(c-a\right)-\left(c-a\right)\left(-b\right)}{ac}=\frac{2b\left(c-a\right)}{ca}\) ( do \(a+b+c=0\))

\(\Rightarrow\frac{x+y}{z}=\frac{2b\left(c-a\right)}{ca}.\frac{b}{c-a}=\frac{2b^2}{ca}=\frac{2b^3}{abc}\)

Hoàn toàn tương tự 

\(\frac{y+z}{x}=\frac{2c^3}{abc};\frac{x+z}{y}=\frac{2a^3}{abc}\)

Do đó :

\(Q=3+\frac{x+y}{z}+\frac{y+z}{x}+\frac{x+z}{y}=3+\frac{2\left(a^3+b^3+c^3\right)}{abc}=3\)

\(=3+\frac{2\left[\left(-c\right)^3-3ab\left(-c\right)^3+c^3\right]}{abc}=3+\frac{2.3abc}{abc}=3+6=9\)

Ta có đpcm

22 tháng 4 2019

*Đặt P = (a-b)/c + (b-c)/a + (c-a)/b, ta có:
P = (a-b)/c + (b-c)/a + (c-a)/b
=> abc.P = ab(a-b) + bc(b-c) + ca(c-a)
= ab(a-b) + bc(b-a + a-c) + ca(c-a) 
= ab(a-b) - bc(a-b) - bc(c-a) + ca(c-a) 
= b(a-b)(a-c) + c(c-a)(a-b) 
= (a-b)(a-c)(b-c) 
=> P = (a-b)(a-c)(b-c)/abc 
*Đặt Q = c/(a-b) + a/(b-c) + b/(c-a), ta có:
Vì a+b+c = 0 => a+b = -c ; b+c = -a ; c+a = -b
Q = c/(a-b) + a/(b-c) + b/(c-a) 
=> (a-b)(b-c)(c-a).Q = c(b-c)(c-a) + a(a-b)(c-a) + b(a-b)(b-c) 
= c(b-c)(c-a) + (-b-c)(a-b)(c-a) + b(a-b)(b-c) 
= c(b-c)(c-a) – c(a-b)(c-a) – b(a-b)(c-a) + b(a-b)(b-c) 
= c(c-a)(2b-a-c) + b(a-b)(a+b-2c) 
= 3bc(c-a) – 3bc(a-b) 
= 3bc(b+c-2a) 
= 3bc(-a-2a) 
= -9abc 
=> Q = -9abc/(a-b)(b-c)(c-a) = 9abc /(a-b)(b-c)(a-c) 
Vậy P.Q = 9 (đpcm)

3 tháng 8 2017

bài này có trong nâng cao phát triển toán 8 tập 1 nè!

12 tháng 9 2017

Gọi \(M=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\)

Ta có : \(M.\frac{c}{a-b}=1+\frac{c}{a-b}\left(\frac{b-c}{a}+\frac{c-a}{b}\right)=+\frac{c}{a-b}\left(\frac{b^2-bc+ac-a^2}{ab}\right)\)

\(=1+\frac{c}{a-b}.\frac{\left(a-b\right)\left(c-a-b\right)}{ab}=1+\frac{2c^2}{ab}=1+\frac{2c^3}{abc}\)

Tương tự : \(M.\frac{a}{b-c}=1+\frac{2a^3}{abc};M.\frac{b}{c-a}=+\frac{2b^3}{abc}\)

\(\Rightarrow A=3+\frac{2\left(a^3+b^3+c^3\right)}{abc}=9\)(vì \(a^3+b^3+c^3=3abc\))