Chứng minh tích 2 số tự nhiên liên tiếp hoặc chia hết cho 6 hoặc chia 18 dư 2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy: các số vừa chia hết cho 2 và 3 thì chia hết cho 6
Ví dụ: 2 x 3 = 6. 6 chia hết cho 2, 3 thì nó chia hết cho 6
số chia hết cho 2,3 thì chia hết cho 6
ví dụ : 2 x 3 = 6
số chia hết cho 2 và 9 thì chia hết cho 18
ví dụ 9 x 8 = 72
Số chia hết cho 2 và 3 thì chia hết cho 6
Ví dụ: 2 x 3 = 6. 6 chia hết cho 2 và 3 nên chia hết cho 6
Số chia hết cho 2 và 9 thì chia hết cho 18
Ví dụ: 9 x 8 = 72. 72 chia hết cho 2 và 9 nên 72 chia hết cho 18. 72 : 18 = 4
Tích 2 số tự nhiên đó là a(a+1)
Với a=3k thì 3k(3k+1) chia hết cho 3 nên chia 3 dư 0
Với a=3k+1 thì (3k+1)(3k+2)=9k^2+9k+2=3k(3k^2+3k)+2 chia 3 dư 2
Với a=3k+2 thì (3k+2)(3k+3)=(3k+2)3(k+1) chia hết cho 3 nên chia 3 dư 0. vậy ta có đpcm
Nếu một trong hai số chia hết cho 3 thì tích chia hết cho 3 (tức là chia 3 dư 0)
Nếu cả hai số đều không chia hết cho 3 thì sẽ có 1 số chia cho 3 dư 1, số kia chia cho 3 dư 2 (vì là hai số tự nhiên liên tiếp) => tích của chúng chia cho 3 dư 2.
Tích 2 số tự nhiên đó là a(a+1)
Với a=3k thì 3k(3k+1) chia hết cho 3 nên chia 3 dư 0
Với a=3k+1 thì (3k+1)(3k+2)=9k^2+9k+2=3k(3k^2+3k)+2 chia 3 dư 2
Với a=3k+2 thì (3k+2)(3k+3)=(3k+2)3(k+1) chia hết cho 3 nên chia 3 dư 0. vậy ta có đpcm
a)
Nếu một trong hai số chia hết cho 3 thì tích chia hết cho 3 (tức là chia 3 dư 0)
Nếu cả hai số đều không chia hết cho 3 thì sẽ có 1 số chia cho 3 dư 1, số kia chia cho 3 dư 2 (vì là hai số tự nhiên liên tiếp) => tích của chúng chia cho 3 dư 2.
b)
350 +1 chia 3 dư 1 nên nó không thể là tích của 2 số tự nhiên liên tiếp, vì nếu là tích của 2 số tự nhiên liên tiếp thì nó chia cho 3 dư 0 hoặc dư 2 (theo câu a)
bn định cho tá bài ak