so sánh phân số : M=1+2+3+...+a/a và N=1+2+3+...+b/b(a;b thuộc N,a bé hơn b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1: để x là số nguyên thì: 5 chia hết cho 2x+1
=> \(2x+1\in U\left(5\right)\)
+> \(2x+1\in\left\{1;-1;5;-5\right\}\)
=> \(x\in\left\{0;-1;2;-3\right\}\)
3.
A:
20032003+1=20032002.2003+1=20032002+1
20032004+1=20032002.2003.2003+1=20032002.2003+1(loại số 2003 thứ hai của cả mẫu số và tử số)
B:
20032002+1=20032002+1
20032003+1=20032002.2003+1
Suy ra: A=B
so sánh các phân số sau : a) 7/9 và 19/17
b) n/n+3 và n+1/n+2
c) A = 10^11-1/10^12-1 và B = 10^10+1/10
a) Ta có :
\(\frac{7}{9}< 1\); \(\frac{19}{17}>1\)
Vì \(\frac{7}{9}< 1< \frac{19}{17}\)nên \(\frac{7}{9}< \frac{19}{17}\)
b) Xét phân số trung gian là \(\frac{n}{n+2}\)
Vì \(\frac{n}{n+3}< \frac{n}{n+2}\)và \(\frac{n}{n+2}< \frac{n+1}{n+2}\)
\(\Rightarrow\frac{n}{n+3}< \frac{n+1}{n+2}\)
c) Ta có :
\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10.\left(10^{10}+1\right)}{10.\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}=B\)
Vậy \(A< B\)
1, Tìm các số x biết:\
a, -x-3/4=18/7
-x=18/7+3/4
-x=93/28
x=-93/28
Vậy...
1.a) 3/4 > 5/10
b) 35/25 > 16/14
2.a) 7/5 > 5/7
b) 14/16 < 24/21
HT nha
( bạn t.i.c.k cho mik nha, mik cảm ơn )